模型中对未来数据的预测

2022-05-26 12:36:20   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《模型中对未来数据的预测》,欢迎阅读!
模型,预测,未来,数据
1 趋势分析法

趋势分析法称之趋势曲线分析、曲线拟合或曲线回归,它是迄今为止研究最多,也最为流行的定量预测方法。它是根据已知的历史资料来拟合一条曲线,使得这条曲线能反映负荷本身的增长趋势,然后按照这个增长趋势曲线,对要求的未来某一点估计出该时刻的负荷预测值。常用的趋势模型有线性趋势模型、多项式趋势模型、线性趋势模型、对数趋势模型、幂函数趋势模型、指数趋势模型、逻辑斯蒂(logistic)模型、龚伯茨(gompertz)模型等,寻求趋势模型的过程是比较简单的,这种方法本身是一种确定的外推,在处理历史资料拟合曲线,得到模拟曲线的过程,都不考虑随机误差。采用趋势分析拟合的曲线,其精确度原则上是对拟合的全区间都一致的。在很多情况下,选择合适的趋势曲线,确实也能给出较好的预测结果。但不同的模型给出的结果相差会很大,使用的关键是根据地区发展情况,选择适当的模型。 2 回归分析法

回归分析法(又称统计分析法),也是目前广泛应用的定量预测方法。其任务是确定预测值和影响因子之间的关系。但由于回归分析中,选用何种因子和该因子系用何种表达式有时只是一种推测,而且影响因子的多样性和某些因子的不可测性,使得回归分析在某些情况下受到限制。

回归分析预测方法是要通过对历史数据的分析研究,该方法不仅依赖于模型的准确性,更依赖于影响因子其本身预测值的准确度。

3 指数平滑法

趋势分析和回归分析都是根据时间序列的实际值建立模型,再利用模型来进行预测计算的。指数平滑法是用以往的历史数据的指数加权组合,来直接预报时间序列的将来值。

其中衰减因子0<α<1,体现"重近轻远",即近期数据对预测影响大,远期数据影响小的基本原则。α越大时,由近期到远期数据的加权系数由大变小就越快,是强调新近数据的作用。例如当α=0.9时,各加权系数分别为0.90.090.009等。在极端情形下,α=1,则以往数据对预报没有任何影响。

4 灰色模型法

灰色系统理论是反模糊控制的观点和方法延伸到复杂的大系统中,将自动控制与运筹学数学方法相结合,研究广泛存在于客观世界中具有灰色性的问题。有部分信息已知和未知的系统称为灰色系统。

但使用长数据列得到的结果与其它相比,并不占优,数据列过长,系统受干扰的成分多,不稳定因素大,反而易使模型精度降低,降低预测结果的可信度。

5 分析与比较

(1)从适用条件看,回归分析和趋势分析致力于统计规律的研究与描述,适用于大样本,且过去、现在和未来发展模式一致的预测;指数平滑法是利用惯性原理对增长趋势外推,


"重近轻远"的预测原则;灰色模型法是通过对原始数据的整理来寻求规律,它适用于贫信息条件下的分析和预测。

(2)从采用的数据形式看,灰色系统理论是采用生成数序列建模。回归分析法、趋势分析法均是采用原始数据建模。而指数平滑法是通过对原始数据进行指数加权组合直接预测未来值。

(3)从计算复杂程度看,相对简单的是回归分析法和趋势分析法。

(4)从适用的时间分类看,指数平滑法、灰色模型法较适宜近期预测。对中、长期预测,回归法、趋势分析法、改进型灰色模型较为合适。


本文来源:https://www.wddqxz.cn/cbec3b56312b3169a451a446.html

相关推荐