【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《高一数学公式:方差公式- 》,欢迎阅读!
精品资料欢迎阅读
高一数学公式:方差公式
对学过的知识一定要多加练习,这样才能进步。因此,本文库为大家整理了高一数学公式:方差公式,供大家参考。 一.方差的概念与计算公式 例1 两人的5次测验成绩如下: X: 50,100,100,60,50 E(X )=72; Y: 73, 70, 75,72,70 E(Y )=72。
平均成绩相同,但X 不稳定,对平均值的偏离大。 方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响
方差即偏离平方的均值,记为D(X ): 直接计算公式分离散型和连续型,具体为: 这里 是一个数。推导另一种计算公式
得到:“方差等于平方的均值减去均值的平方”。
其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动 二.方差的性质
1.设C为常数,则D(C) = 0(常数无波动); 2. D(CX )=C2 D(X ) (常数平方提取); 证:
特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值) 3.若X 、Y 相互独立,则 证:记 则
前面两项恰为 D(X )和D(Y ),第三项展开后为 当X、Y 相互独立时, ,
1
精品资料欢迎阅读
故第三项为零。 特别地
独立前提的逐项求和,可推广到有限项。 方差公式:
平均数:M=(x1+x2+x3+…+xn)/n (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)
方差公式:S2=〈(M-x1)2+(M-x2)2+(M-x3)2+…+(M-xn)2〉╱n 三.常用分布的方差 1.两点分布 2.二项分布 X ~ B ( n, p )
引入随机变量 Xi (第i次试验中A 出现的次数,服从两点分布) ,
3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略)
7.t分布 :其中X~T(n),E(X)=0;D(X)=n/(n-2); 8.F分布:其中X~F(m,n),E(X)=n/(n-2); ~
正态分布的后一参数反映它与均值 的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。 例2 求上节例2的方差。
解 根据上节例2给出的分布律,计算得到 工人乙废品数少,波动也小,稳定性好。 方差的定义:
设一组数据x1,x2,x3······xn中,各组数据与它们的平均数x(拔)的差的平方分别是(x1-x拔)2,(x2-x拔)2······(xn-x
2
精品资料欢迎阅读
拔)2,那么我们用他们的平均数s2=1/n【(x1-x拔)2+(x2-x拔)2+·····(xn-x拔)2】来衡量这组数据的波动大小,并把它叫做这组数据的方差。
这篇高一数学公式:方差公式就为大家分享到这里了。希望对大家有所帮助!
3
本文来源:https://www.wddqxz.cn/5cab3d2e5b1b6bd97f192279168884868762b838.html