【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《电阻率的微观原理,电阻热功率的微观解释》,欢迎阅读!
电阻(或电阻率)的微观理论
理论一:设有一段金属导体,横截面积为S,长为L,在导体的两端加上电压U,则导体中的场强E
U
.L
这时,一自由电子在电场力FeE的作用下做定向移动。设电子的质量为m,则定向移动的加速度为
a
FeEUe。 运动的自由电子要频繁地与金属正离子碰撞,使其定向移动受到破坏,限制了移mmmL
动速率的增加。自由电子在碰撞后向各个方向弹射的机会相等,失去了之前定向移动的特性,又要从新开始做初速为0的定向加速运动。 自由电子相继两次碰撞的间隔有长有短,设平均时间为t,则自由电子在下次碰撞前的定向移动速率vt
at,那么在时间t内的平均速率v
atUe。结合之前推出的a,2mL
UetUne2St
得自由电子的平均移动速率为v。 代入电流的微观表达式IneSv,得I对于一
2mL2mL
ne2St
定的金属材料,在一定的温度下,t是个确定的数值(10~10s),也就是说,对于一段金属导体,
2mL
-14
-12
是个常量。 因此,导体中的电流强度I与两端的电压U成正比。导体两端的电压与导体中的电流强度的比值(
2mL
ne2St
)就是这段导体的电阻,即R
2mL
ne2St
。由此看出,导体的电阻与长度成正比,与横截面积成反
比,与
2m
ne2t
成正比(实际上对于金属导体而言,均为自由电子来导电,所以只有
1
由导体的自身特性决nt
定)。因此,在一定温度时,导体的电阻是R
L
。ρ是导体的电阻率。对于一定温度与相同的导体,电S
阻率一定。请根据以上叙述完成电阻率ρ的推导过程。
理论二:自由电子的定向移动可视为匀速运动,则电场力F与金属正离子对自由电子的平均阻力f相等,
eUUeUetU2e2t
即fFeE,电场力功率PFFv,则电场力对L长导线中所有电2
LL2Lm2Lm
U2e2nSte2U2nSt222222mL子的功率PPFnLS,而电热功率PQIRneSv(电热功率
2Lm2mLne2St
的微观表达式),由此可知,电场力功率等于电热功率,即PPQ,又因为金属正离子对自由电子的平均
eUe2U2nSt
阻力fFeE,所以阻力功率等于电场力功率,等于电热功率,即PffvnLs。
L2mL
根据以上陈述:1、试着求出电热功率的微观表达式。2、证明电场力功率等于电热功率等于金属正离子对
自由电子的平均阻力功率。 (2014西城一模 ) 24.(20分)
(1)如图1所示,固定于水平面上的金属框架abcd,处在竖直向下的匀强磁场
中。金属棒MN沿框架以速度v向右做匀速运动。框架的ab与dc平行,bc与ab、dc垂直。MN与bc的长度均为l,在运动过程中MN始终与bc平行,且与框架保持良好接触。磁场的磁感应强度为B。
a. 请根据法拉第电磁感应定律E
Φ
,推导金属棒MN中的感应电动势E; t
b
B
M
v
a
c
N 图1
d
b. 在上述情景中,金属棒MN相当于一个电源,这时的非静电力与棒中自由
电子所受洛伦兹力有关。请根据电动势的定义,推导金属棒MN中的感应电动势E。
(2)为进一步研究导线做切割磁感线运动产生感应电动势的过程,现构建如下情景: 如图2所示,在垂直于纸面向里的匀强磁场中,一内壁光滑长为l的绝缘细管MN,沿纸面以速度v
向右做匀速运动。在管的N端固定一个电量为q的带正电小球(可看做质点)。某时刻将小球释放,小球将会沿管运动。已知磁感应强度大小为B,小球的重力可忽略。在小球沿管从N运动到M的过程中,求小球所受各力分别对小球做的功。
M
v
B 24.(20分)解: (1)
a. 如图1所示,在一小段时间t内,金属棒MN的位移
xvt 〖2分〗
b
这个过程中线框的面积的变化量 Slxlvt 〖1分〗 穿过闭合电路的磁通量的变化量
ΦBSBlvt 〖1分〗 c
根据法拉第电磁感应定律 E解得 EBlv 〖1分〗
b. 如图2所示,棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力 fevB,f即非静电力 〖2分〗 在f的作用下,电子从M移动到N的过程中,非静电力做功
WevBl 〖2分〗
W
根据电动势定义 E 〖1分〗
q
M
v f
B
N 图2 M
B
v a
Φ
〖1分〗 t
x 图1
N
d
N 解得 EBlv 〖1分〗
图2 (2)小球随管向右运动的同时还沿管向上运动,其速度如图3所示。小球所受洛伦兹力f合如图4所示。
将f合正交分解如图5所示。 〖2分〗 f合 f v合 f合 f合 v′
v合
v f ′ F
图3
图4
图5
图6
小球除受到洛伦兹力f合外,还受到管对它向右的支持力F,如图6所示。 洛伦兹力f合不做功 Wf合0 〖2分〗 沿管方向,洛伦兹力f做正功 W1flqvB l
垂直管方向,洛伦兹力f'是变力,做负功 W2W1qvB l 〖2分〗 由于小球在水平方向做匀速运动,则 Ff' 〖1分〗 因此,管的支持力F对小球做正功 WFqvBl 〖1分〗
说明:用其它方法计算管的支持力F对小球所做功,只要过程、结果正确,可得4分。
本文来源:https://www.wddqxz.cn/0f915131ab114431b90d6c85ec3a87c240288a98.html