小数乘整数教学反思

2023-05-05 19:33:12   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《小数乘整数教学反思》,欢迎阅读!
小数,整数,反思,教学


透过小数乘法的教学,学生明白了根据积的变化规律,即:先按整数乘法的计算方法得出积,再看两个因数共有几位小数,就从积的右边起数出几位,点上小数点。积的位数不够,要在积前用0补足后再点小数点。

这时有一道决定题引起了不小的争议。这道题是决定“三位小数乘一位小数,积必须是四位小数”。对于这道题,大家众说纷纭,结果理由各不相同。

有的同学认为是对的,意见归纳如下:

书中关于小数乘法计算法则说:“计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点”。两个因数一共有4位小数,那么积肯定是四位小数。

有的同学认为是错的,意见归纳如下:

三位小数乘一位小数,如果积的末尾有0,那积就不是四位小数,如0.125×0.8的积本来是0.1000,但因小数末尾的零能够省去,便得到积为0.1,于是就出现了三位小数乘一位小数,积不必须是四位小数的状况!

针对学生出现的不同意见,我先让学生充分发表自己的意见。最后我提醒同学们,数学讲究严密性,处理后的积不能与原先的原始积混为一谈。做1.25×0.08时,我们先用125×8=1000,然后看因数当中一共有4位小数,于是就从积的`右面起数出4位点上小数点!

而不是先去零后,再数位数!要注意的是我们在点上积的小数点时就已经确定了一点:积是四位数!虽然为了书写简便,在不影响积的大小的状况下,我们根据小数的性质将小数部分末尾的0省略掉。但省略不等于没有。我们在决定小数乘法的积是几位小数时,要根据小数乘法的计算法则,对原始的积进行决定,所以三位小数乘一位小数,积必须是四位小数。

这是学生第一次接触小数乘法,教材安排了通过例1,例二让学生在解决实际问题的过程中掌握小数乘整数的计算方法,之后安排了一些练习巩固。而在实际的学情中,有大部分学生都会算小数乘法,知道当成整数计算,然后点上小数点,但对于为什么要这么算,竖式的写法还很模糊这一现象,我想如果按照教材的编排进行,这样的问题没有挑战性,学生不会感兴趣,于是从以下几个方面安排:《小数乘整数》数学教学反思

1、突出积变化的规律

在教材中积变化的规律是复习,我在教学中却将当它是新知,引导学生发现规律,体验发现的乐趣。充分理解一个因数不变,另一个因数扩大(缩小)多少倍,积就会扩大(缩小)相同的倍数。引导学生直接运用这个规律计算出0.3×2同时运用小数乘整数的意义进行验证,感受规律的正确性。

2、突出竖式的.书写格式。


有了前面对算理的理解,当遇到用竖式计算58.6×6时,学生不再感到困难,但要他们说出为什么这么写,部分孩子还是不能理解,所以我抓住小数点为什么不对齐了引导学生思考,我们已经将58.6扩大10倍,计算的是5866了,所以根据整数乘法的计算方法计算,而不是小数乘法了,最后还得将积缩小10倍。

3、突出小数的位数的变化。

小数位数的变化是本节课的一个难点,在判断小数的位数后选择了两题让学生计算,认识到并不是积的小数的位数和因数的小数位数都是一样的。

不足之处:

1.老师落实不到位,比如学生在处理第一个练习时 58.6时,我只是× 6

让学生自己说出了自己计算的方法,没有让学生用笔标一标末位的数。由于“末位”一词没强调死很多学生都被学习整数乘法时是相同数位对齐,小数加减法强调小数点对齐所迷惑了。

2.在学生说成了结果是351.6时我应该在问一句:为什么小数点点在了6的前面?这样或许就更能加深学生对算理的理解。

3.学生在总结收获时说用整数计算简便,由于时间关系我没能来得及纠正。其实不是为了计算简便才把它看成整数的,而是这里是应用的一种转化的思想,这是一种方法。

4.由于自己的经验不足,导致的课的环节处理不到位,时间安排不合理。

还有个别的小环节,比如在老师领着学生订正完第一道题适时应该让学生同位之间互相说说做题的方法

总之,每一次讲完,磨课后都会有收获,也希望自己的课堂会随着自己的努力而更上一层楼!最后勉励自己:乘风破浪会有时 直挂云帆济沧海!

这是学生第一次接触小数乘法,我大胆改变教材没有使用课本上的情景图,安排了复习积变化的规律,透过例1,让学生在解决实际问题的过程中掌握小数乘整数的计算方法,之后安排了一些练习巩固。而在实际的学情中,有大部分学生都会算小数乘法,明白当成整数计算,然后点上小数点,但对于为什么要这么算,竖式的写法还很模糊这一现象,我想如果按照教材的编排进行,这样的问题没有挑战性,学生不会感兴趣,于是从以下几个方面安排:

1、突出积变化的规律

在教材中积变化的规律是复习,我在教学中却将当它是新知,引导学生发现规律,体验发现的乐趣。充分理解一个因数不变,另一个因数扩大(缩小)多少倍,积就会扩大(缩小)相同的倍数。引导学生直接运用这个规律计算出0.3×2同时运用小数乘整数的好处进行验证,感受规律的正确性。


本文来源:https://www.wddqxz.cn/fc4164186094dd88d0d233d4b14e852459fb39d7.html

相关推荐