乘法的内涵定义和意义

2023-02-25 07:06:14   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《乘法的内涵定义和意义》,欢迎阅读!
义和,乘法,内涵,意义
乘法的内涵、定义和意义

乘法的内涵、定义和意义

乘法的内涵、定义

乘法是为了方便计算,总结出来的一种算数方法,我查了一下定义,其实大同小,差不多都是这样的解释,下面就是我查到的定义:

1、是指将相同的数加法起来的快捷方式.其运算结果称为积.

2、是指一个数或量,增加了多少倍.例如45,就是4增加了5倍率,也可以说成54连加.

乘法的意义

乘法的意义是什么?在旧教材中分的非常清楚,但是学生却易记错,如今新课标下的乘法算式已经不区分乘数与被乘数,53可以列成5*3与可以列成3*5学生是方便了,老师却糊涂了,特别是教到四年级小数的乘法时,5*0.30.3*5这两个算式的意义怎么也说不清楚或者是不敢说清楚,读了《南方教师教育200612用新思想去审视新教材中的“乘法意义”一文,让我们对这类问题有了更清楚的认识,下面把全文摘抄如下:

上个世纪八十年代中期《小学数学教师》就曾展开了一轮关于“乘法意义”的讨论,当时的结论基本上是赞同不必区分被乘数和乘数,后来的课程改革也是朝这个方向走的。现在,我们再回过头去用新的思想去审视新教材中的“乘法意义”,我们会有不少新的发现。

一、 新教材“乘法意义”更接近乘法的本质。

整数乘法意义是“求几个相同加数的和的简便运算”这一本质在过去和今天的教材都是一样的。只是在形式上,新教材允许把“4+4+4+4+4”改写成“4×5”也可以写成“5×4”。反过来,也就是说“5×4”可以表示“45相加的和”也可以表示“54相加的和”。这可以说是 “乘法意义”的一次突破,使我们对“乘法意义”的认识更接近其本质,因为“5×4”可以表示两种意义,以前只有一种意义完全是人为规定。

二、 新教材“乘法意义”开拓了人的思维空间。

如上所述,新教材“乘法意义”不再是一个答案了。当我们解放自己的思想之后,回到现实中的数学之后,我们一定会发现我们思维空间突然变得宽阔了!如果


让学生算“72×8+2×72”,这种题型在过去是一个教学的难点。因为要理解它必须用到“交换律”和“分配律”,要不就会“拐不过弯来”。今天的学生却可以十分自然地选择适当的意义而想到:872加上272不就是1072!而这种如此简单的想法在过去会被认为是不合逻辑的或不严密的。因此,新教材“乘法意义”解放了人的思想,开拓了人的思维空间,为创新思维的提供了更好的平台。

三、 分数乘法同样不必再区分被乘数和乘数。

有人提出“如果专家们真的考虑不区分分数乘法意义,将导致什么后果?想起来还挺可怕的。”这种“可怕”也许就是担心学生会出现一些如上所述的“不符合逻辑的、不严密的”想法,于是“怀念她对数学的严肃、严谨的态度”。数学本身确实以严密的逻辑体系的而成立,这也是使过去中小学数学成为机械、枯燥学科一个重要原因。但对于这些早已严格论证过的数学知识,在教学中非得像写数学著一样让学生去接受吗?何况原来的想法不一定符合实际,如“乘法意义”的唯一性就是一例。因此,在分数乘法意义中,同样不必区分4/9×6 和6×4/9以及3/4×4/94/9×3/4之类的意义,因为它们本身都有两种意义。如4/9×6可以表示“64/9”,也可以表示“4/96倍”或“64/9”。但是,在一个具体的问题中,它的意义一般可以认为是特定的,如“一根6米长的绳子,用去4/9用去多少米?”不论你写成6×4/9还是写成4/9×6,都可以理解为“6米的

4/9”。不过,有趣的是通过特定的想法还可以给它们都“赋予”另一种它们本来就有的意义:1米的4/9就是4/9米,那么6米的4/9就有61米的4/9,也就64/9米。在这里不区分“61米”的4/96个“1米的4/9”,是因为我们知道,能够从逻辑上证明它们是相同的。同样,对于“某厂原有煤4000吨,炼钢用去了2/5,炼铁用去的是炼钢的1/5,炼铁用去了多少吨?”,如果列式就是写成了“2/5×1/5×4000”也就能理解了。

四、 “乘法意义”具有阶段性与统一性。

“乘法意义”在不同阶段有不同的含义,并且可以用“向下兼容”来形容。首先,“几个”是“几倍”的特例。在整数乘法中,两者是等价的,这种思想可以让学生更容易认识“几倍”;当得不到整数倍时,就出现了小数倍,这时“几个”是“几倍”的一种特例,“乘法意义”也就开始了扩展。其次,“一个数的几分之几”也是“一个数的几倍”的特例。当不到1倍时,我们就习惯于说“几分之几”,而不说“几倍”,可见“几倍”和“几分之几”只是说法上的不同而已,本质上却是一样的。这种思想结合实例与直观能让学生更好地理解“一个数的几分之几”的含义进而对“乘法意义”进行有效扩展。在学习了百分数之后,“几倍”和“几分之几”都可以用百分数来表示,这样,“乘法意义”的不同表述的统一性又一次体现出来了。由此可见,“乘法意义”具有阶段性,同时也具有统一性,这也是必然的,因为都是“乘法”嘛!可是,我们过去的思想却一直停在一种不统一的状态,或人为分裂状态。从“单价×数量=总价”到“1倍数×几倍=几倍数”等各种各样数量关系式及相应各种各样的题型中,常碰到这样的实例。


本文来源:https://www.wddqxz.cn/e66066db0608763231126edb6f1aff00bed570bd.html

相关推荐