【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《新课标第一网》,欢迎阅读!
新课标第一网
排列组合的常见题型及其解法 一. 特殊元素(位置)用优先法
把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。
例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?
分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。 解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A4种站法;第二步再让其余的5人站在其他5个位置上,有A5种站法,故站法共有:A4 A5=480(种)
解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有A5种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A4种,故站法共有:A5 A4 480(种) 24241515
二. 相邻问题用捆绑法
对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。
例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法? 解:把3个女生视为一个元素,与5个男生进行排列,共有A6种,然后女生内部再进行排列,有A3种,所以排法共有:A6 A3 4320(种) 3636 三. 相离问题用插空法
元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。
例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?
解:先将其余4人排成一排,有A4种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A5种,所以排法共有:A4 A5 1440(种) 3434 四. 定序问题用除法
对于在排列中,当某些元素次序一定时,可用此法。解题方法是:先将n个元素进行全排列有An种,m(m n)个元素的全排列有Am种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n个元素排成一列,其中mnm Ann个元素次序一定,则有m种排列方法。 Am
例4. 由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数字小于十位数字的六位数有多少个?
解:不考虑限制条件,组成的六位数有A5 A5种,其中个位与十位上的数字一定,所1A5 A55 300(个) 以所求的六位数有:A2215 五. 分排问题用直排法
对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。
例5. 9个人坐成三排,第一排2人,第二排3人,第三排4人,则不同的坐法共有多少种? 解:9个人可以在三排中随意就坐,无其他限制条件,所以三排可以看作一排来处理,不同的坐标共有A9种。 9 六. 复杂问题用排除法
对于某些比较复杂的或抽象的排列问题,可以采用转化思想,从问题的反面去考虑,先求出无限制条件的方法种数,然后去掉不符合条件的方法种数。在应用此法时要注意做到不
感谢您的阅读,祝您生活愉快。
本文来源:https://www.wddqxz.cn/e08dc737e209581b6bd97f19227916888586b9f9.html