【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《一元三次方程因式分解公式》,欢迎阅读!
一元三次方程因式分解公式
因式分解法不是对所有的三次方程都适用,只对一些简单的三次方程适用.对于大多数的三次方程,只有先求出它的根,才能作因式分解。当然,对一些简单的三次方程能用因式分解求解的,当然用因式分解法求解很方便,直接把三次方程降次。
例如:解方程x³-x=0
对左边作因式分解,得x(x+1)(x-1)=0,得方程的三个根:x1=0;x2=1;x3=-1。
一元三次方程求根公式
标准型的一元三次方程aX³+bX²+cX+d=0(a,b,c,d∈R,且a≠0),其解法有:
1、意大利学者卡尔丹于1545年发表的卡尔丹公式法; 2、中国学者范盛金于1989年发表的盛金公式法。
两种公式法都可以解标准型的一元三次方程。用卡尔丹公式解题方便,相比之下,盛金公式虽然形式简单,但是整体较为冗长,不方便记忆,但是实际解题更为直观。
扩展资料:
因式分解主要有十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法等方法,求根公因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法式法,换元法,长除法,短除法,除法等。
分解一般步骤:
1、如果多项式的首项为负,应先提取负号;
这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;
要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。
口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。
原则上:
1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。
2、分解因式的结果必须是以乘积的形式表示。
3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。
4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止;
5、结果的多项式首项一般为正。 在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;
6、括号内的首项系数一般为正。
本文来源:https://www.wddqxz.cn/da6ba401e618964bcf84b9d528ea81c758f52e87.html