高一数学重点知识点:幂函数解析

2023-11-19 20:12:36   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《高一数学重点知识点:幂函数解析》,欢迎阅读!
知识点,高一,函数,解析,重点
精品资料 欢迎下载

高一数学重点知识点:幂函数解析

高中数学相对于初中来说在学习方法和解题难度上都会有所增加,所以我们要熟悉每个重点知识点,以此来找到更好的学习方法。掌握幂函数的内部规律及本质是学好幂函数的关键所在,下面是整理的高一数学重点知识点:幂函数解析,希望对广大朋友有所帮助。 定义:

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域:

a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[q的奇偶性来确定,即如果同时q为偶数,则x能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值 性质:

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/qqp都是整数,则x^(p/q)=q次根号(xp次方)如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0+)。当指数n是负整数时,a=-kx=1/(x^k)显然x0函数的定义域是(-0)(0+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x0,则a可以是任意实数; 排除了为0这种可能,即对于x0x0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。 x大于0时,函数的值域总是大于0的实数。

x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。而只有a为正数,0才进入函数的值域。


精品资料 欢迎下载

由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况. 可以看到:

(1)所有的图形都通过(11)这点。

(2)a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)a大于1时,幂函数图形下凹;a小于1大于0时,幂函数图形上凸。 (4)a小于0时,a越小,图形倾斜程度越大。

课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。

(5)a大于0,函数过(00);a小于0,函数不过(00)点。 (6)显然幂函数无界。




本文来源:https://www.wddqxz.cn/d9cb588b1a5f312b3169a45177232f60dccce764.html

相关推荐