数学名家—莱昂哈德

2023-02-11 00:27:19   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《数学名家—莱昂哈德》,欢迎阅读!
哈德,莱昂,名家,数学
数学名家—莱昂哈德·欧拉

生平简介

欧拉于1707年出生在瑞士巴塞尔。1720他十三岁时就考入了巴塞尔大学,起初他学习神学,不久改学数学他十七岁在巴塞尔大学获得硕士学位,二十岁受凯瑟林一世的邀请加入圣彼得斯堡科学院。他二十三岁成为该院物理学教授,二十六岁就接任著名数学家但尼尔·伯努利的职务,成为数学所所长。两年后,他有一只眼睛失明,但仍以极大的热情继续工作,写出了许多杰出的论文。

1741年普鲁士弗雷德里克大帝把欧拉从俄国引诱出来,让他加入了柏林科学院。他在柏林呆了二十五年后于1766年返回俄国。不久他的另一只眼睛也失去了光明。即使这样的灾祸降临,他也没有停止研究工作欧拉具有惊人的心算才能,他不断地发表一流的数学论文,直到生命的最后一息。1783年他在圣彼得斯堡去逝,终年七十六岁。欧拉结过两次婚,有十三个孩子,但是其中有八个在襁褓中就死去了。

欧拉的著述浩瀚,不仅包含科学创见,而且富有科学思想,他给后人留下了极其丰富的科学遗产和为科学现身的精神。历史学家把欧拉同阿基米德、牛顿、高斯并列为数学史上的“四杰”。如今,在数学的许多分支中经常可以看到以他的名字命名的重要常数、公式和定理。 主要贡献

欧拉和丹尼尔·伯努利一起,建立了弹性体的力矩定律:作用在弹性细长杆

上的力矩正比于物质的弹性和通过质心轴和垂直于两者的截面的惯性动量。 他还直接从牛顿运动定律出发,建立了流体力学里的欧拉方程。这些方程组

在形式上等价于粘度为0的纳维-斯托克斯方程。人们对这些方程的主要兴趣在于它们能被用来研究冲击波。

他对微分方程理论作出了重要贡献。他还是欧拉近似法的创始人,这些计算

法被用于计算力学中。此中最有名的被称为欧拉方法。 在数论里他引入了欧拉函数。

自然数的欧拉函数被定义为小于并且与互质的自然数的个数。例如,,因为

有四个自然数13578互质。

计算机领域中广泛使用的RSA公钥密码算法也正是以欧拉函数为基础的。 在分析领域,是欧拉综合了莱布尼兹的微分与牛顿的流数。

他在1735年由于解决了长期悬而未决的贝塞尔问题而获得名声: 其中是黎曼函数。

欧拉将虚数的幂定义为如下公式:这就是欧拉公式,它成为指数函数的中心。 在初等分析中,从本质上来说,要么是指数函数的变种,要么是多项式,两

者必居其一。被理查德·费曼称为“最卓越的数学'”的则是欧拉公式的一个简单推论(通常被称为欧拉恒等式)

1735年,他定义了微分方程中有用的欧拉-马歇罗尼常数:

他是欧拉-马歇罗尼公式的发现者之一,这一公式在计算难于计算的积分、求和与级数的时候极为有效。

1739年,欧拉写下了《音乐理论的尝试》,书中试图把数学音乐结合

起来。

1736年,欧拉解决了柯尼斯堡七桥问题,并且发表了论文《关于位置几

何问题的解法》,对一笔画问题进行了阐述,是最早运用图论和拓扑学的典


范。

数独是欧拉发明的拉丁方块的概念,在当时并不流行,直到20世纪由平凡日

本上班族锻治真起,带起流行 最有影响的100--欧拉 欧拉命名

欧拉公式、欧拉函数、欧拉定理、欧拉角、欧拉方程 、欧拉线 、欧拉圆、《欧拉全集》 人物评价

欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。十八世纪瑞士数学家和物理学家伦哈特·欧拉始终是世界最杰出的科学家之一。他的全部创造在整个物理学和许多工程领域里都有着广泛的应用 欧拉的数学科学成果简直多得令人难以相信。他写了三十二部足本著作,其中有几部不止一卷,还写下了许许多多富有创造性的数学科学论文。总计起来,他的科学论著有七十多卷。欧拉的天才使纯数学应用数学的每一个领域都得到了充实,他的数学物理成果有着无限广阔的应用领域。

早在上一个世纪,艾萨克·牛顿就提出了力学的基本定律。欧拉特别擅长论证如何把这些定律运用到一些常见的物理现象中。例如,他把牛顿定律运用到流运动建立了流体力学方程。同样他通过认真分析刚体的可能运动应用牛顿定律建立了一个可以完全确定刚体运动的方程组。当然在实际中没有物体是完全刚体。欧拉对弹性力学也做出了贡献,弹性力学是研究在外力的作用下固体怎样发生形变的学说。

欧拉的天才还在于他用数学来分析天文学问题,特别是三体问题,即太阳、月亮和地球在相互引力作用下怎样运动的问题。这个问题──二十一世纪仍要面临的一个问题──尚未得到完全解决。顺便提一下,欧拉是十八世纪独一无二的杰出科学家。他支持光波学说,结果证明他是正确的。

欧拉丰富的头脑常常为他人做出成名的发现开拓前进的道路。例如,法国数学家和物理学家约瑟夫·路易斯·拉格朗日创建一方程组,叫做“拉格朗日方程”此方程在理论上非常重要,而且可以用来解决许多力学问题。但是由于基本方程是由欧拉首先提出的,因而通常称为欧拉—拉格朗日方程。一般认为另一名法国数学家让·巴普蒂斯·约瑟夫·傅立叶创造了一种重要的数学方法,叫做傅里叶分析法,其基本方程也是由伦哈特·欧拉最初创立的,因而叫做欧拉—傅里叶方程。这套方程在物理学的许多不同的领域都有着广泛的应用其中包括声学和电磁学。

数学方面他对微积分的两个领域──微分方程和无穷级数──特别感兴趣。他在这两方面做出了非常重要的贡献,但是由于专业性太强不便在此加以叙述。他对变分学和复数学的贡献为后来所取得的一切成就奠定了基础。这两个学科除了对纯数学有重要的意义外,还在科学工作中有着广泛的应用。欧拉公式eiQ=cosθisinθ表明了三角函数和虚数之间的关系,可以用来求负数的对数,是所有数学领域中应用最广泛的公式之一。欧拉还编写了一本解析几何的教科书,对微分几何和普通几何做出了有意义的贡献。

欧拉不仅在做可应用科学数学发明上得心应手,而且在纯数学领域也具备几乎同样杰出的才能。但是他对数论做出的许多贡献非常深奥难懂,不宜在此叙述。欧拉也是数学的一个分支拓扑学领域的先驱,拓扑学在二十世纪已经变得非常重要。


本文来源:https://www.wddqxz.cn/cf7989f4b84cf7ec4afe04a1b0717fd5360cb22b.html

相关推荐