【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《数学自主招生试卷解读及备考策略》,欢迎阅读!
高校自主招生数学试题特点及备考策略分析
一、 各校自主招生试卷解读
1、近年来各高校自主招生数学试题呈现如下几个特点:
(1)从考试的知识来看,注重初高中知识的拓展与延伸,一部分会超出高考的知识范围,常涉及一些大学与高中的衔接内容。不追求知识点的全面覆盖,重点问题侧重考查; (2)试题难度总体上会保持稳定,6乘高考难题,4乘奥赛(也可能5:5),题目难度在高考以上,竞赛以下,经典试题有一定的重现率;
(3)注重学生能力,突出对数学思维能力、运算能力、运算技巧、应用知识解决问题能力的考查;
(4)不同学校的侧重点略有不同,但三角、函数、方程、数列、不等式、解析几何等内容是高频考点;
(5)不同学校的试卷结构也不一样;以2017年为例: 北大自招题:20道单选题,选错扣1分,不选得0分。
清华自招题:35个不定项选择题,选对得4分,选错得0分,漏选得2分。 2、高频考点一览
模块 数论初步
主要知识点
1.整数的整除性、质数与合数、完全平方数、高斯函数
2. 同余、不定方程
备注
非高考内容 (注:清华命题数为2-3 题,北大 3-4,其他高校在 1-2 )
非高考内容+ 高考内容
非高考内容+ 高考内容(1~2题)
集合与逻辑 1.集合间的运算、集合知识的综合应用 2. 德摩根定理、容斥原理、抽屉原理 不等式
1.平均值不等式系列
2.柯西不等式系列
3.其他不等式: (1) 权方和不等式及其范例; (2) 贝努利不等式及其范例; (3) 琴声不等式及其范例;(4)舒尔不等式及其范例; (5) 母不等式及其范例 1.概率的定义及其相关公式 2.随机变量及其概率分布
1.解析几何的基本运算
2. 取值范围与最值问题以及探索性问题
平面几何的基本计算和证明、三角形五心问题、图形变换
知识框架: (1) 圆的基础知识 (2) 三角形的全等与相似,平面几何两个重要的定理 (3) 三角形平分线定理及面积公式(4) 其他常用定理
概率 解析几何 平面几何
高考内容(结合高等数学) 高考内容
非高考内容(竞赛内容,高于初中联赛,低于高中联赛)
函数与高数 1.高等数学相关内容介绍(极限、微分中值定理)
2.导数与抽象函数、数列、均值不等式
3.函数与高数的两大应用: (1) 超越不等式化整式不等式的应 (2) 函数的子结论在不等式问题中的应用
非高考内容+ 高考内容(自招和高考压轴题多出现)
三角函数与
复数
1.三角函数公式与变形及三角求值 2.三角函数的图像与最值
3.解三角函数,含三角或反三角的方程解问题; 4.复数的三角表示、单位根、复数的运算
1.复杂的空间几何构型,空间范围内的旋转对称等变换问题;
2.立体几何与空间向量
非高考内容+ 高考内容
立体几何
组合数学
高考内容
1.高考知识点: (1) 组合计数知识概要 (2) 排列数与组非高考内容+ 高考内合数公式(3)组合数基本性质 (4) 二项式定理与多项容 式定理
2.非高考内容知识点: (1) 计数问题; (2) 存在性问题; (3)离散量的最值问题; (4) 操作变换与游戏策略问题.
1.数域、整数的整除性 2.一元多项式因式分解 非高考内容+ 高考内3.多项式函数 4.方程理论(二次方程/ 三次方容 程/方程的根/简单函数方程)
1.数列的定义和等差、等比数列的概念 2.一阶递推数列
3.二阶递推数列与递推及其他分式数列
4.放缩法技巧总结: (1) 放缩法类型; (2) 使用加强命题法证明不等式及经典题目方法探究
高考内容(补充不动点特征根法)
方程和多项
式
数列
二、 数学自主招生备考策略
1、练好基本功,注意知识点的全面覆盖
数学题目被猜中的可能性很小,一般知识点都是靠平时积累,中等难度题目分数比例大约60% 左右。因此,要求学生平时不仅要把基础知识打扎实,还要适度增加奥赛知识内容的练习。 2、联系教材,适度拓宽知识面
如上面提及的一些平时不太注意的小章节或高考不一定考的问题,如数论初步、 三角函数、解析几何等知识板块的一些公式或结论,掌握竞赛数学的基本知识和解题技巧。 3、关注题型变化,练好近几年真题
知己知彼,百战百胜。选择题的 “考场技巧”平时要多练,北大这两年自招、博雅全是选择题,熟悉一下题型和套路。往年的自招真题,还有全国联赛的一试题、预赛题,都具有很高参考价值。
附:获奥数奖项可以报考的自主招生专业汇总(报考范围最宽) 序号 专业名称 01 数学与应用数学 04 07 10 13 16
统计学 软件工程 网络工程 财务管理 金融学类
序号
02 05 08 11 14 17
专业名称 信息与计算科学 应用统计学
数据科学与大数据技术 信息安全 会计学 财政学类
序号 03 06 09 12 15 18
专业名称 数学基础数学 计算机科学与技术 物联网工程 工商管理 经济学类 经济与贸易类
本文来源:https://www.wddqxz.cn/ce5c26d282c758f5f61fb7360b4c2e3f57272590.html