【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《二次根式知识点归纳及题型总结》,欢迎阅读!
二次根式知识点归纳和题型归类
一、知识框图 二、知识要点梳理
知识点一、二次根式的主要性质:
1.; 2.; 3.;
4. 积的算术平方根的性质:;
5. 商的算术平方根的性质:.
6.若,则.
知识点二、二次根式的运算
1.二次根式的乘除运算
1 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. 2 注意每一步运算的算理;
2.二次根式的加减运算 先化简,再运算,
3.二次根式的混合运算 1明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;
2整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.
一. 利用二次根式的双重非负性来解题a0a≥0,即一个非负数的算术平方根是一个非负数;
1.下列各式中一定是二次根式的是 ; A、3; B、2.等式(x1)=1-x成立的条件是_____________. 3.当x____________时,二次根式2x3有意义. 取何值时,下列各式在实数范围内有意义;
2
x; C、x21; D、x1
1 2
5x1
3
x4 2x1
4若x(x1)
xx1,则x的取值范围是 5若x3x3,则x的取值范围是 ;
x1
x1
6.若3m1有意义,则m能取的最小整数值是 ;若20m是一个正整数,则正整数m的最小值是________. 7.当x为何整数时,10x11有最小整数值,这个最小整数值为 ;
8. 若2004aa2005a,则a2004=_____________;若yx33x4,则xy
2
9.设m、n满足n
m299m22
,则mn= ;
m3
2
10. 若三角形的三边a、b、c满足a4a4b3=0,则第三边c的取值范围是
11.若|4x8|xym0,且y0时,则 A、0m1 B、m2 C、m2 D、m2 二.利用二次根式的性质a2=|a|=
a(ab)
即一个数的平方的算术平方根等于这个数的绝对值来解题
0(a0)a(a0)
1.已知x33x2=-xx3,则 ≤0 ≤-3 C.x≥-3 D.-3≤x≤0
2..已知a化简二次根式a3b的正确结果是 A.aab B.aab C.aab D.aab 3.若化简|1-x|-x28x16的结果为2x-5则 A、x为任意实数 B、1≤x≤4 C、x≥1 D、x≤4 4.已知a,b,c为三角形的三边,则(abc)2(bca)2(bca)2= 5. 当-3时,化简x26x9x210x25= ;
6、化简|xy|x2(xy0)的结果是 A.y2x B.y C.2xy D.y
7、已知:a12aa2=1,则a的取值范围是 ;A、a0; B、a1; C、a0或1; D、a1 8、化简(x2)1的结果为 A、2x; B、x2;C、
x2
x2 D、2x
三.二次根式的化简与计算主要依据是二次根式的性质:a2=aa≥0,即a2|a|以及混合运算法则
一化简与求值
5
1.把下列各式化成最简二次根式:133 2412402 325m 4x4x2y2
82
2.下列哪些是同类二次根式:175,
1,12,2,1,3,1; 2
5a3b3c,
275010
a3b2c3,
aab
,a 4
bcc
3.计算下列各题:
9a34a6bc252182a2b2ab 1627(33) 212ab;3 4 5- 61()
45b3c5a354c5c324
4.计算123318112150
3
2
5
5.已知x
2
2xx2
18x10,则x等于 A.4 B.±2 C.2 D.±4
二先化简,后求值:
本文来源:https://www.wddqxz.cn/cd143a84a900b52acfc789eb172ded630a1c984e.html