《代入法解二元一次方程组》教学反思

2023-04-20 14:37:21   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《《代入法解二元一次方程组》教学反思》,欢迎阅读!
入法,一次方程,二元,反思,教学
《代入法解二元一次方程组》教学反思



《代入法解二元一次方程组》教学反思1

《代入法解二元一次方程组》教学反思解二元一次方程组是在学习了一元一次方程、认识了二元一次方程(组)的基础上学习的内容,它是初中数学习的重要内容,该部分知识的学习可以提高学习解题的能力也为学生后期学习其他奠定基础,所以解二元一次方程组是非常重要的学习内容。解二元一次方程组主要通过代入法和加减法将二元一次方程进行“消元”,从而转化为一元方程,再利用一元一次方程的解法求解。解答该类方程组的理论依据主要是等式性质,主要运用了转化的数学思想,即将未知的知识转化为已知的知识和方法,(将二元一次方程组转化为熟悉的一元一次方程)。二元一次方程组解题注意事项:1、代入消元法解方程组时能直接带入的可直接将其中一个方程代入另一个方程进行进算;需变形的要将系数为1的进行变形,便于计算;系数不为1的要将系数将小的未知项进行变形,简化计算,降低计算难度。代入时不能带入原方程,否则未知项会抵消掉。2、加减消元法解方程组有时加,有时减。主要观察含有同一未知数项的系数决定,如果在一方程组中两方程同一未知数项的系数相等则减,系数互为相反数则加;若两方程同一未知数项的系数不同则要通过方程变形把两个方程同一未知数项的系数变相同或互为相反数,(根据等式性质二)然后相加或相减变为一元一次方程。在相加、减时,采用左边加减左边,右边加减右边的原则,如果等号左边有常数应将常数移到右边,含未知数的'项移至等号左边。3通过消元变为一元一次方程,解答完成后应将未知数的值分别带入方程①和方程②,看能否使方程左右两边相等,若两方程左右两边都相等则解答正确。然后画一大括号将解表示出来。

《代入法解二元一次方程组》教学反思2


本节课在《二元一次方程组》一章中占有重要地位。它是从现实生活中的数量关系产生的一个数学模型,是解决实际问题的有效策略。之前学生已经学过一元一次方程,之后还要学习一次函数、二次函数,因此二元一次方程组起着承前启后的作用。本节课主要是方法和思想的融合,下面就课改前后对这节课的教学作一反思

新的教学理念要发挥学生的主体作用,充分参与探究知识的过程。在对二元一次方程组的解法探讨上,就利用中国古代鸡兔同笼的问题引入,让学生列出一元一次方程和二元一次方程组后,思考:一元一次方程2x+46-x=22与二元一次方程组x+y=612x+4y=222)区别和联系?如何解方程组呢?让学生人组讨论、交流。教师深入到学生的讨论之中,引导学生从方程组与一元一次方程的结构或设未知数表示数量关系的角度观察。学生通过对比观察发现二者联系:y=6-x6-x代替方程2中的y方程组就转化成一元一次方程2x+46-x)=22进而求出xy的值。学生从两种方程的不同中找出二者的联系,突破了难点,问题的提出是建立在学生现有知识的基础上,让学生在探究过程中体会化归思想。问题的设置符合学生认知规律,在学生已有知识——接一元一次方程的基础上,让学生再研究将二元一次方程组转化为一元一次方程的解法。大多数学生能在老师的引导下发现一元一次方程中的6-x就是方程组中的y并且能用6-x代入y从而将方程组转化为一元一次方程。同时多数学生知代入消元法是解二元一次方程组的一种方法,消元化归的数学思想韵含在方法中,方法是有形的,想是无形的。然后再出示一般形式二元一次的方程组进行练习,进一步体验消元化归思想。

从整节课来看,数学生基本上能够运用所学新知解决问题,比课改前的效果好。但是对于学困生来说还是难度很大,学困生学习的问题时常困扰着我,后要努力缩小学困生的面积方向发展。

《代入法解二元一次方程组》教学反思3


本文来源:https://www.wddqxz.cn/c7e66c6c32126edb6f1aff00bed5b9f3f80f721d.html

相关推荐