燃料电池的基本工作原理及主要用途

2023-04-23 02:04:20   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《燃料电池的基本工作原理及主要用途》,欢迎阅读!
燃料,用途,原理,电池,主要


简述燃料电池的基本工作原理及主要用途

1.燃料电池的工作原理

燃料电池是一种按电化学原理,即原电池的工作原理,等温地把贮存在燃料和氧化剂中化学能直接转化为电能的能量转换装置。其单体电池是由电池的正极(即氧化剂发生还原反应的阴极)负极(即还原剂或燃料发生氧化反应的阳极)和电解质构成,燃料电池与常规电池的不同之处在于,它的燃料和氧化剂不是贮存在电池内,而是贮存在电池外部的贮罐内,不受电池容量的限制,工作时燃料和氧化剂连续不断地输入电池内部,并同时排放出反应产物。

以磷酸型燃料电池为例,其反应式为: 燃料极(阳极) H22H++2e-

空气极(阴极) 12O2+2H++2e-H2O 综合反应式 H2+12O2H2O

以上反应式表示:燃料电池工作时向负极供给燃料(),向正极供给氧化剂(空气),燃()在阳极被分解成带正电的氢离子(H+)和带负电的电子(e-),氢离子(H+)在电解质中移动与空气极侧提供的O2发生反应,而电子(e-)通过外部的负荷电路返回到空气极侧参与反应,连续的反应促成了电子(e-)连续地流动,形成直流电,这就是燃料电池的发电过程,也是电解反应的逆过程。 2. 燃料电池的应用 2.1能源发电

燃料电池电站的每一套设备都包括了一整套采用天然气发电的电力系统。分为以下几个分单元:①燃料电池组②燃气制备③空气压缩机④水再生利用⑤逆变器⑥测量与控制系统。燃料电池组产生的直流电通过逆变器转换成电力系统所需的交流电。各国工业界人士普遍对于燃料电池在发电站的应用前景看好。 2.2汽车动力 目前,各国的汽车时用量均在不断增加,其排放的尾气已成为城市环境的主要污染源之一,特别是发展中国家,由于环境治理的力度不够,这一问题更加突出。于是人们要求开发新型的清洁、高效的能源来解决这一问题。质子交换膜燃料电池的出现,解决了燃料电池在汽车动力成本和技术方面存在的若干问题,使燃料电池电动车的开发和使用成为可能。这种电池具有室温快速启动、无电解液流失、水易排出、寿命长、比功率与比能量高等特点,适合做汽车动力,是目前世界各国积极开发的运输用燃料电池。 2.3家庭用能源

天然气作为一种洁净的能源已经在家庭中被广泛使用,但其主要被用于炊事和生活热水,以天然气为燃料的燃气电池在家庭中的广泛应用在开辟了天然气在家庭中一种新的用途的同时也将解决目前高峰用电紧张的状况。家庭的一切用电无论是电视机、冰箱、空调等家用电气还是电脑办公设备都可以通过燃料电池来提供电源,作为家庭使用的分散电源,可同时提供家庭用热水和采暖,这样可将天然气的能量利用率提高到70%~90%。

2.4其它方面的应用

碱性燃料电池和质子交换膜燃料电池运行时基本没有红外辐射,而且噪音小,用做潜艇动力,可大大提高其隐蔽性;同时由于它们可在常温下启动工作且能量密度高,还是理想的航天器工作电源。此外,质子交换膜燃料电池还可用作野外便携式电源。

总之,燃料电池的用途将越来越广泛,它将遍布我们身边的每个角落,成为我们生活中不可缺少的能量来源。




关于核壳结构的纳米粒子燃料电池催化剂的研究

摘要燃料电池的性能好坏、寿命长短以及成本高低都受到催化剂这一关键材料的制约,近年来人们除了在提高催化剂活性方面做了大量工作以外,在降低催化剂成本方面也做了大量研究推进工作本文介绍了燃料电池非铂、低铂催化剂主要体系在低温燃料电池方面的最新研究进展,并提出了更加先进的燃料电池催化剂。

关键词:低温燃料电池;低铂催化剂;核壳结构

正文: 低温燃料电池是直接以化学反应方式将燃料的化学能转换为电能的能量转换装置,是一种绿色的能源技术,对解决目前我们所面临的能源危机和环境污染问题具有重要意义,美国《时代周刊》将燃料电池列为 21 世纪的高科技之首;在我国的科技发展规划中,燃料电池技术也被列为重要的发展方向之一。

催化剂是燃料电池中关键材料之一,催化剂的成本占到燃料电池成本的 1/3。铂被证明是用于低温燃料电池的最佳催化剂活性组分,但用铂做为燃料电池催化剂也存在如下严重问题:1)铂资源匮乏;2)价格昂贵;3)抗毒能力差。目前通过合金来改善催化剂的研究有碳负载的铂钌合金催化剂PtRu/C以及添加有其他促进成分的 Pt/C PtRu/C 催化剂等。为了有效降低燃料电池的成本,主要采用集中两个方面研究来降低铂载量:1)开发非铂电催化剂;2)开发研制低铂电催化剂。本文就此对近年来的研究现状进行综述。

非铂催化剂的研究主要采用钯基或钌基掺杂其他金属制备催化剂,近年来,研究人员用了多种方法制备了各种活性组分高度分散的钯基催化剂,在催化燃料电池的阴极氧还原反应(ORR)中显示了可与铂基催化剂相媲美的效果。同时,作为直接甲酸燃料电池(DFAFC)和直接乙醇燃料电池(DAFC)的阳极催化剂,也显示了诱人的应用前景。

另外, Pd 基催化剂不仅比 Pt 便宜,而且 Pd 资源储量丰富,虽然Pd 对氧还原ORR催化活性不如 Pt 好,但是 Pt/Pd 合金能够在一定程度上缩小 CO 毒作用。Capon [1]人很早就研究Pd 对甲酸氧化的电催化性质,发现甲酸在 Pd Pt 上电氧化最大的不同是在 Pd 上只有一个氧化峰,这是因为 Pd 对甲酸的氧化是通过直接反应途径进行的。

但是必须要承认, 由于非铂催化剂活性太低而无法取代铂基催化剂,很多研工作集中到低铂电催化剂的研究主要有两个方面降低铂载量:(1)采用 Pt 其他金属的合金化;(2)采用 Pt 单层修饰其他金属或者核壳结构的方法。

就目前世界情况来说,在燃料电池催化剂方面,关于核-壳结构的研究是很有前途性的.

由于贱金属容易溶于酸性介质,使掺杂了贱金属的催化剂的稳定性下降;了避免这一现象,另一种降低铂载量的有效办法是制备核-壳结构双金属电催化剂,通过使用不同的金属做核,铂做壳,从而大大减少铂的使用量,由于这种特殊的核壳结构,两种金属之间的作用力会使催化剂的电催化活性以及稳定性大大提高。已有研究报道了双金属核-壳结构催化剂的研究,将 Pt 分散到另一种金属表面,提高 Pt 利用率同时大大降低了 Pt 的使用量,实验显示活性比较好[2]

近几年来,核壳结构的纳米粒子的设计与可控制备已经成为纳米科学领域中的一个热点。相对于单金属和传统双金属组分(合金或二元金属混合物)纳米颗粒, 核壳结构(记为“核@ 壳”)纳米金属颗粒具有特殊的电子结构及表面性质, 因而其在催化等领域日益受到重视。目前具有核壳结构的 Ag@Pt,Co@Pt[3], Ni@Pt,


本文来源:https://www.wddqxz.cn/c6ec863713a6f524ccbff121dd36a32d7375c767.html

相关推荐