【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《2016年北京大学数学学科夏令营初赛试题》,欢迎阅读!
2016 年北京大学数学学科夏令营初赛试题
本试卷共 4 题,每题 30 分,满分 120 分,考试时间 180 分钟.
1、已知锐角△ABC 中,∠B=60,P 为 AB 中点,Q 为外接圆上弧 AC(不包含点 B)的中点,H 为△ABC 的垂心.如果 P,H,Q 三点共线,求∠A.
0
2、求所有的整系数多项式 P(x),使得存在一个无穷项整数数列{an},其中任意两项互不相等,且满足:P(a1)=0,P(ak+1)=ak (k=1,2,⋯).
3、给定正整数 n,有 2n 张纸牌叠成一堆,从上到下依次编号为 1 到 2n.我们进行这样的操作:每次将所有从上往下数偶数位置的牌抽出来,保持顺序放在牌堆下方.例如 n=3 时, 初始顺序为 123456,操作后依次得到 135246,154326,142536,123456. 证明:对任意正整数 n,操作不超过 2n−2 次后,这堆牌的顺序会变回初始状态.
4、给定正整数 p,q,数列{an}满足:a1=a2=1,an+2=pan+1+qan (n=1,2,3⋯).求证:要使得对任意正整数 m,n,均有(am,an)=a(m,n),当且仅当 p=1 时成立.
2016 年北京大学数学学科夏令营初赛试题
参考答案
1、答案 75. 解 如图,设 O 为外接圆圆心,延长 CO 交外接圆于 D,则四边形 BHAD 为平行四边形,因此 D,P,H 三点共线,进而 D,P,H,Q 四点共线.
0
连接 OH,BQ,由∠B=60,于是 BH=AD=CD/2=OQ,
又 OB=OQ,因此 BHQO 为菱形,从而
∠OBC=∠OCB=∠BAD=∠HBA,
又
∠BCD=∠BQD=∠OBQ=∠HBQ,
因此 BO,BQ,BH 将∠CBA 四等分,进而不难得知∠A=75. 2、答案 P(x)=x+C,其中 C∈Z.
0
0
解 设
P(x)=λ0+λ1x+⋯+λmx,
其中 m∈N∗,λi∈Z (i=0,1,2,⋯,m),则
P(ak+1)−P(ak+2)=ak−ak+1,k=1,2,⋯,
而
P(ak+1)−P(ak+2)=λ1(ak+1−ak+2)+λ2(a
因此
(ak+1−ak+2)∣(ak−ak+1),k=1,2,⋯,
因此
∣a1−a2∣⩾∣a2−a3∣⩾∣⋯⋯⩾|ak−ak+1|⩾|ak+1−ak+2|⩾⋯.
由于∣a1−a2∣的值有限,因此必然存在 K,使得当 k⩾K 且 k∈Z 时,有 ∣ak−ak+1∣=∣ak+1−ak+2∣=∣ak+2−ak+3∣=⋯.
由于数列{an}中任意两项互不相等,因此有
ak−ak+1=ak+1−ak+2=ak+2−ak+3=⋯,
因此有
2
m
−a )+⋯+λm(a −a ), k+1 k+2 k+1 k+2
2mm
P(ak+1)−ak+1=P(ak+2)−ak+2=⋯.
若 m⩾2,则方程
P(x)−x=P(aK+1)−aK+1
有无数个解,矛盾.这样得到了所有符合题意的整系数多项式 P(x)=x+C,其中常数 C∈Z
3、证明 我们证明一个等价的命题,将每次操作改为先从上往下取后一半的数出来,然后与前一半交叉放置(类似于洗扑克牌),如初始顺序为 123456,操作后依次得到142536,154326,135246,123456.将纸牌按顺时针摆放,使得第一张牌和最后一张牌(它们始终为 1 和 2n)重合,将第一张牌的位置记为 1,顺时针旋转将其他牌的位置依次记为2,3,⋯,2n-1.定义纸牌 m 顺时针旋转到纸牌 n 时旋转的步数为纸牌 m 到 n 的距离,记为d(m→n),如图中 d(2→3)=3.
下面证明经过 k 次操作(k∈N∗)后
d(1→2)=d(2→3)=⋯=d(2n−1→2n),
用数学归纳法.
归纳基础 当 k=1 时,有
d(1→2)=d(2→3)=⋯=d(2n−1→2n)=1,
命题成立.
归纳假设与递推证明 设当 k=p 时,有
d(1→2)=d(2→3)=⋯=d(2n−1→2n)=q. 不难计算得经过操作后位置 x 的纸牌将会移动到位置
f(x)=(2x−1)%(2n−1),
本文来源:https://www.wddqxz.cn/c61e7c1acdc789eb172ded630b1c59eef8c79a1e.html