四年级奥数习题及答案:抽屉原理

2024-02-24 21:00:18   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《四年级奥数习题及答案:抽屉原理》,欢迎阅读!
奥数,习题,抽屉,原理,答案
年级奥数习题及答案:抽屉原理

抽屉原理是四年级的学生非常头疼的奥数题目,多做多练多学,这样对于有这类型的题目就轻而易举了,快来看看吧!

习题一

构造抽屉最关键的在于找到题目中的苹果和抽屉,并确定它们的数量。对于四年级孩子,我们只要求能解决一些简单的问题。

例:幼儿园新购了熊猫、大象、长颈鹿3种玩具分给7个小朋友,每种玩具都有很多,每个小朋友可以选择两个玩具,可以相同也可以不同。请证明肯定有两个小朋友选的玩具是相同的。

分析:

三种玩具选两个,因为可以相同,所以共有六种不同的选择方式:[(熊,熊)(象,象)(鹿,鹿)(熊,象)(熊,鹿)(象,鹿)];

7个小朋友可看作7个苹果,6种选择方式看作6个抽屉, 7÷6=1(人)……1(人)

所以肯定至少有两个小朋友选的玩具是相同的! 习题二

例:有1根红筷子,5根绿筷子,7根黄筷子,8根蓝筷子;问: (1)至少取几根筷子才能保证取到颜色相同的一双筷子? (2)至少取几根筷子才能保证取到颜色相同的两双筷子? (3)至少取几根筷子才能保证取到颜色不同的两双筷子? 分析:

(1)要取到颜色相同的一双筷子,即是要取到两根颜色相同的筷子,从最倒霉的角度去思考,需要每种颜色各取一根,再任取1根即可。

1+1+1+1+1=5()

(2)要取颜色相同的两双筷子,即是要取颜色相同的4根筷子,从最倒霉的角度去思考,需要每种颜色各取3根,再任取1根,而红色只有1根,取完即可。

1+3+3+3+1=11()

(3)要取颜色不同的两双筷子,即是要取颜色不同的筷子各两根,


则先把数量最多的颜色先取完,其他颜色各取一根,再任取一根即可。

8+1+1+1+1=12()

这类问题中要注意:筷子,袜子这些东西都是成双成对的,一双由两只组成。

习题三

这里要注意理解两个词的含义, 保证:确定,肯定,万无一失! 最不利:最倒霉,最繁琐,最糟糕!

最不利原则要求我们从最极端的角度去考虑事件。 我们分两类去讨论:

例:口袋里共有5个红球,4个黄球,3个绿球;问: (1)至少取几个球才能保证取到一个红球?

(2)至少取几个球才能保证取到三种颜色的球各一个? 分析:

(1)要取到一个红球,从最倒霉的角度去思考,需要先取到4个黄球,3个绿球,再取一个红球,

所以共计4+3+1=8()

(2)要取到三种颜色的球各一个,从最倒霉的角度去思考,需先取5个红球,4个黄球,再取一个绿球即可,所以共计5+4+1=10()

(这里要注意下顺序,从最多数量的颜色开始取)


本文来源:https://www.wddqxz.cn/ac43b6af80d049649b6648d7c1c708a1284a0a2d.html

相关推荐