【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《英文翻译》,欢迎阅读!
公路几何设计
公路是供汽车或其他车辆行驶的一种线性带状结构体。它是由路基、路面、桥梁、涵洞和隧道组成。此外,它还有路线交叉、防护工程和交通工程及沿线设施。
路基是路面、路肩、边坡、边坡等部分的基础。它是按照路线的平面位置在地面上开挖和填筑的土石料构造物。路基作为行车部分的基础,必须保证它有足够的强度和稳定性,可以防止水及其他自然灾害的侵蚀。
路面和公路表面的部分。它是用混合料铺装的单层或多层结构物。路面要求光滑,具有足够的强度,稳定性和抗滑功能。路面质量的好坏,直接影响到行车的安全、舒适性和通行。
公路几何线形设计要考虑公路平面线形、纵断面线形以及横断面的组成相协调,还要注意视距的畅通等等。确定公路几何线形时,在考虑地形、地物、土地的合理利用及环境保护因素时,要充分利用公路几何组成部分的合理尺寸和线性组合。
1、线形设计
道路的线形反应在平面图上是由一系列的直线相连的圆曲线构成的。现代设计时常在直线与圆曲线之间插入缓和曲线。
线形应是连续的,应避免平缓线形的突变或者长直线末端与小半径曲线相连的突然变化,否则会发生交通事故。同样,不同半径的圆弧首尾相连(曲线)或在两半径不同的圆弧之间插入短直线都是不良的线形,除非在圆弧之间插入缓和曲线。长而平缓的曲线在任何时候都是可取的,因为这种曲线线形优美,将来也不会废弃。然而,双向道路线形全由曲线构成也是不理想的,因为一些驾驶员通过曲线路段时总是犹豫。长而缓的曲线应用在拐角较小的地方。如果采用短曲线,则会出现“扭结”。另外,线路的平、纵断面设计应综合考虑,而不应只顾其一,不顾其二,例如,当平曲线的起点位于竖曲线的顶点附近时将会产生严重的交通事故。
行驶在曲线路段上的车辆受到离心力的作用,就需要一个大小相同方向相反的由超高和侧向摩擦提供的力抵消它,这些控制值对于某一规定设计车速可能采用曲线的曲率作了限制。通常情况下,某一圆曲线的曲率是由其半径来体现的。而对于线形设计而言,曲率常常通过曲线的程度来描述,即100英尺的曲线所对应得中心角,曲线的程度与曲线的半径成反比。
公路的直线地段设置正常的路拱,而曲线地段设置超高,在正常断面与超高断面之间必须设置过渡渐变路段。通常的做法是维持道路每一条中线设计标高不变,通过抬高外侧边缘以形成所需的超高, 对于直线与圆曲线直接相连的线形,超高应从未到达曲线之前的直线上开始,在曲线顶点另一端一定距离以外达到全部超高。
如果车辆以高速行驶在直线与小半径的圆曲线相连的路段,行车是极不舒服的。汽车驶进曲线路段时,超高开始,车辆向内侧倾斜,但乘客须维持身体的垂直状态,因为此时
1
未受到离心力的作用。当汽车到达曲线路段时,离心力突然产生,迫使乘客向外倾斜,为了维持平衡,乘客必须迫使自己的身体想内侧倾斜。由于剩余超高发挥作用,乘客须作进一步的姿势调整。当汽车离开曲线时,上述过程正好相反。插入缓和曲线后,半径从无穷大逐渐过渡到圆曲线上的某一固定值,离心力逐渐增大,延缓和曲线设置超高,离心力平稳逐渐增加,避免了行车颠簸。
缓和曲线在铁路上已经使用多年,但在公路上最近才得以应用,这是可以理解的。火车必须遵循精确地运行轨道,采用缓和曲线后,上述那种不舒服的感觉才能消除。然而,汽车司机在公路上可以随意改变侧向位置,通过迂回进入圆曲线来为自己提供缓和曲线。但是在一个车道上(有时在其他车道上)做这种迂回行驶是非常危险的。设计合理的缓和曲线使得上述迂回没有必要。主要是出于安全原因,公路部门广泛采用缓和曲线。
对于半径相同的圆曲线来说,在末端加上缓和曲线就会改变曲线和直线的相关位置,因此应在最终定线勘测之前应决定是否采用缓和曲线。一般曲线的起点标为PC或BC,终点标为PT或EC。对含有缓和曲线的曲线,通常的标记配置增为:TC、SC、CS和ST。对于双向道路,急弯处应增加路面宽度,这主要基于 以下因素:(1)驾驶员害怕驶出路面边缘;(2)由于车辆前轮和后轮的行驶轨迹不同,车辆有效横向宽度加大;(3)车辆前方相对于公路中线倾斜而增加的宽度。对于宽度为24英尺的道路 ,增加的宽度很小,可以忽略。只有当设计车速为30mile/h,且曲度大于22度时,加宽可达2英尺。然而,对于较窄的路面,即使是在较平缓的曲线路段上,加宽也是很重要的。
2、纵坡线
公路的竖向线形及其对车辆运行的安全性和经济性的影响构成了公路设计中最重要的要素之一。竖向线形由直线和竖向抛物线或圆曲线组成,称为纵坡线。纵坡线从水平逐渐上升时称为坡度变化的影响。
在确定坡度时最理想的情况是挖方与填方平衡,没有大量的借方和弃方。所有运土都尽可能下坡运并且距离不长,坡度应随地形而变化,并且与既有的排水系统的升降方向一致。在山区,坡度要使得挖填平衡以使得总成本最低。在平原或草原地区,坡度于地表近似平行,但是高于地表足够高度,以利于路面排水,如有必要,可利用风力来清除表面积雪。如公路接近或沿河流走行,纵坡线的高度由预期洪水位来决定。无论在何种情况下,平缓连续的坡度线要比由短直线段连接短竖曲线构成的不短变向的坡度线好得多。
由上坡向下坡变化的路段应设在挖方路段,而由下坡向上坡变化的路段应设在填方路段,这样的线形设计较好,往往可以避免形成与现状地貌相反的土堆或凹地。与挖填方平衡相比,在确定纵坡线时,其他考虑则重要得多。
城市项目通常比农村项目要求对控制要素进行更详尽的研究,对高程进行更细致的调整。一般来说,设计与现有条件相符的坡度较好,这样可避免一些不必要的花费。
在坡度的分析和控制中,坡度对机动车运行费用的影响是最重要的考虑因素之一。坡度增加耗油显然增大,车速就要减慢。一个较为经济的方案则可使坡度减少而增加年度成
2
本与坡度不减而增加的车辆运行年度成本之间相平衡。这个问题的准确方法取决于对交通流量和交通类型的了解,这只有通过交通调查才能获知。
在不同的州,最大纵坡也相差悬殊,AASHTO标准建议有设计车速和地形来选择最大纵坡。现行设计以设计车速为70mile/h时最大纵坡为5%,设计车速30mile/h 时,根据地形不同,最大纵坡一般为7%~12%。当采用较长的待续爬坡时,在没有为慢行车辆提供爬坡道时,坡长不能超过临界坡长。临界坡长可从3%纵坡的1700英尺变化至8%纵坡的500英尺。
持续长坡的坡度必须小于公路任何一个断面的最大坡度,通常将长的持续单一纵坡断开,设计成底部为一陡坡,而接近坡顶则让坡度减小。同时还要避免由于断面倾斜而造成的视野受阻。调整公路的最大纵坡为9%只有当路面排水成问题时,如水必须排至边沟或排水沟,最小纵坡标准才显示其重要性。这种情况下,AASHTO标准建议最小坡度为0.35%。
3、视距
为保证行车安全,公路设计必须使得驾驶员视线前方有足够的一段距离,使他们能够避让意外的障碍物,或者安全的超车。视距就是车辆驾驶员前方可见的公路长度。安全视距具有两方面含义:“停车视距”或“不超车视距”或“超车视距”。
有时,大件物体也许会掉道路上,会对撞上去的车辆造成严重的危害。同样,轿车或卡车也可能会被一溜车阻在车道上。无论是哪种情况发生,合理设计要求驾驶员在一段距离以外就能看见这种险情,并在装上去之前把车刹住。此外,认为车辆通过离开所行使的车道就可以躲避危险的想法是不安全的,因为这会导致车辆失控或与另一辆车相撞。
停车视距由两部分组成:第一部分是当驾驶员发现障碍物而做出制动之前驶过的一段距离,在这一觉察和反应阶段,车辆以其初始速度行驶;第二部分是驾驶员刹车后车辆所试过的一段距离。第一部分停车视距取决于车速级驾驶员的察觉时间和制动时间。第二部分停车视距取决于车速、刹车、轮胎、路面的条件以及公路线形的坡度。
在双车道公路上,每间隔一定距离,就应该提供超越慢行车辆的机会。否则,公路容量将降低,事故将增多,因为急躁的驾驶员在不能安全超车时冒着撞车的危险强行超车,能被看清的允许安全超车的前方最小距离叫超车视距。驾驶员在做出是否超车的决定时。必须将前方的能见距离与完成超车动作所需的距离对比考虑。影响他做出决定的因素是开车小心程度和车辆加速性能。由于人与人 的显著差别,主要是人的判断和动作而不是力学定理决定的超车行为随着驾驶员的不同而大不相同。
公路几何设计是确保公路交通安全的基础,公路建设的其他项目都围绕公路的几何设计而展开,因此,在公路几何设计过程中,如果出现任意的不安全潜在因素,或者降低水平的组合的组合设计,都会影响整个几何设计的质量,并对交通的安全带来不利影响。因此对于公路的几何设计必须予以重点关注。
3
本文来源:https://www.wddqxz.cn/a4a92e62227916888486d7e9.html