【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《考研数学一解答题专项强化真题试卷22(题后含答案及解析)》,欢迎阅读!
考研数学一解答题专项强化真题试卷22 (题后含答案及解析)
题型有:1.
1. (1999年)为清除井底的污泥,用缆绳将抓斗放入井底.抓起污泥后提出井口,已知井深30m,抓斗自重400 N,缆绳每米重50 N,抓斗抓起的污泥重2000N.提升速度为3 m/s,在提升过程中,污泥以20N/s的速率从抓斗缝隙中漏掉.现将抓起污泥的抓斗提升到井口,问克服重力需作多少焦耳的功? (说明:①l N×1 m=1 J;m,N,s,J分别表示米、牛顿、秒、焦耳;②抓斗的高度及位于井口上方的缆绳长度忽略不计)
正确答案:解1 作x轴如图2.6.将抓起污泥的抓斗提升到井口需作功 ω=ω1+ω2+ω3 其中ω1是克服抓斗自重作的功,ω2是克服缆绳重量
所作的功;ω3是提出污泥所作的功.由题设可知 ω1=400×30=12 000 dω2=50(30—x)dx从而 在时间间隔[t,t+dt]内提升污泥所作的功为 dω3=3(2 000—20t)dt将污泥从井底提升到井口共需时间所以则共需作功 ω=1 2 000+22 500+57 000=91 500 (J) △解2 以时间t为积分变量,在时间间隔[t,t+dt]内克服重力所作的功为 dω=[400+(30—3t)50+(2 000—20t)=3dt 涉及知识点:一元函数积分学
2. (2002年试题。八)设有一小山,取它的底面所在的平面为xOy坐标面,其底部所占的区域为D={(x,y){x2+y2一xy≤75},小山的高度函数为h(x,y)=75一x2一y2+xy.(1)设M(x0,y0)为区域D上一点,问h(x,y)在该点沿平面上什么方向的方向导数最大?若记此方向导数的最大值为g(x0,y0),试写出g(x0,y0)的表达式;(2)现欲利用此小山开展攀岩活动,为此需要在山脚寻找一上山坡度最大的点作为攀登的起点.也就是说,要在D的边界线x2+y2一xy=75上找出使(1)中的g(x,y)达到最大值的点.试确定攀登起点的位置.
正确答案:(1)由题设,结合方向导数取最大值的方向是梯度方向这一性质,则因此h(x,y)沿方向(y0—2x0)i+(x0一2y0)j方向导数为最大值,且此最大值为(2)令f(x,y)=g2(x,y)=(y一2x)2+(x一2y)2,由题意只需求f(x,y)在约束条件φ(x,y)=75一x2一y2+xy=0下的条件最大值点,由拉格朗日乘数法,记F(x,y,λ)=f(x,y)+Aλφ(x,y)=(y一2x)2+(x一2y)2+λ(75一x2一y2+xy)则由可解得λ=2或x+y=0.当λ=2时,可解出可能条件极值点为当x+y=0时,可解出可能条件极值点为(5,一5),(一5,5).由于,而f(x,y)|(5,-5)=f(x,y)|(-5,5)=450所以点(5,一5)和点(一5,5)可作为攀登的起点.
解析:许多求极值和最值的问题中,需根据实际问题首先建立目标函数或约束条件,然后再求极,最值.本题中因|gradh|为方向导数的最大值,故而将代为求|gradh|在条件x2+y2一xy=75F的条件极值,用拉格朗日乘数法求该条件极值. 知识模块:多元函数微分学
3. (07年)求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y
本文来源:https://www.wddqxz.cn/93db4c19b94cf7ec4afe04a1b0717fd5370cb297.html