有理数和无理数的定义及区别

2023-05-02 12:00:34   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《有理数和无理数的定义及区别》,欢迎阅读!
无理数,有理数,定义,区别
有理数和无理数的定义及区别

有理数为整数和分数的统称,不是有理数的实数称为无理数。接下来给大家分享有理数和无理数的定义及区别。 有理数的定义

有理数是指整数(正整数、0、负整数)和分数的统称,有理数是整数和分数的集合。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。

有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当abb小于a,记作a>bb。任何两个不相等的有理数都可以比较大小。 无理数的定义

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、πe(其中后两者均为超越数)等。

无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率等。 有理数和无理数的区别

(1)性质的区别:

有理数是两个整数的比,总能写成整数、有限小数或无限循环小数。

无理数不能写成两个整数之比,是无限不循环小数。 (2)结构的区别:

有理数是整数和分数的统称。 无理数是所有不是有理数的实数。 (3)范围区别:

有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算均可进行。

无理数是指实数范围内不能表示成两个整数之比的数。


本文来源:https://www.wddqxz.cn/8692324b6f175f0e7cd184254b35eefdc8d31528.html

相关推荐