高中数学教学设计(精选多篇)

2022-03-29 10:11:20   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《高中数学教学设计(精选多篇)》,欢迎阅读!
教学设计,高中,数学,精选


高中数学教学设计(精选多篇)

第一篇:高中数学教学设计高中数学教学设计——函数的奇偶性 函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性. 教学目标

1. 通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.

2. 理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.

3. 在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的. 任务分析

这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数ykx,反比例函数 (k≠0),二次函数yax


(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数yfx,一定有f0)=0;既是奇函数,又是偶函数的函数有fx)=0,x∈r.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果. 教学设计 一、问题情景

1. 观察如下两图,思考并讨论以下问题: 1)这两个函数图像有什么共同特征?

2)相应的两个函数值对应表是如何体现这些特征的?

可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同. 对于函数fxxf(-39f3f(-24f2f(-11f1事实上,对于r内任意的一个x都有f(-x=(-x2x2fx.此时,称函数yx2为偶函数. 2. 观察函数fx)=xfx)= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征. 22

可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f


x)也是一对相反数,即对任一x∈r都有f(-x)=-fx.此时,称函数yfx)为奇函数. 二、建立模型

由上面的分析讨论引导学生建立奇函数、偶函数的定义 1. 奇、偶函数的定义

如果对于函数fx)的定义域内任意一个x

(

本文来源:https://www.wddqxz.cn/6bdc44ff640e52ea551810a6f524ccbff021ca2f.html

相关推荐