100个著名初等数学问题

2022-05-23 07:01:25   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《100个著名初等数学问题》,欢迎阅读!
初等数学,著名,问题,100
100个著名初等数学问题

01题阿基米德分牛问题Archimedes'ProblemaBovinum

太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成。在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数1/2+1/3;黑牛数多于棕牛,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7。在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6棕牛数是全体白牛数的1/6+1/7。问这牛群是怎样组成的? 02题德?梅齐里亚克的法码问题TheWeightProblemofBachetdeMeziriac

一位商人有一个40磅的砝码,由于跌落在地而碎成4.来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从140磅之间的任意整数磅的重物。问这4块砝码碎片各重多少?

03题牛顿的草地与母牛问题Newton'sProblemoftheFieldsandCows

a头母牛将b块地上的牧草在c天内吃完了;a'头母牛将b'块地上的牧草在c'天内吃完了;a"头母牛将b"块地上的牧草在c"天内吃完了;求出从ac"9个数量之间的关系? 04题贝韦克的七个7的问题

1


Berwick'sProblemoftheSevenSevens 在下面除法例题中,被除数被除数除尽: * * 7 * *

* * * * 7 * ┃* * 7 * * * * * * * * * * * * 7 * * 7 * * * * * 7 * * * * * * * * 7 * *

用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?

05题柯克曼的女学生问题Kirkman'sSchoolgirlProblem 某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次?

06题伯努利-欧拉关于装错信封的问题

TheBernoulli-EulerProblemoftheMisaddressedletters n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置。

07题欧拉关于多边形的剖分问题Euler'sProblemofPolygonDivision

可以有多少种方法用对角线把一个n边多边形(平面凸多边形)剖分成三角形?

2


08题鲁卡斯的配偶夫妇问题Lucas'ProblemoftheMarriedCouples

n对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的妻子并坐,问有多少种坐法? 09题卡亚姆的二项展开式OmarKhayyam'sBinomialExpansion

n是任意正整数时,求以ab的幂表示的二项式a+bn次幂。

10题柯西的平均值定理Cauchy'sMeanTheorem 求证n个正数的几何平均值不大于这些数的算术平均值。 11题伯努利幂之和的问题Bernoulli'sPowerSumProblem 确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p+…+np。

12题欧拉数TheEulerNumber

求函数φ(x)=(1+1/x)xΦ(x)=(1+1/x)x+1x无限增大时的极限值。

13题牛顿指数级数Newton'sExponentialSeries 将指数函数ex变换成各项为x的幂的级数。 14题麦凯特尔对数级数

NicolausMercator'sLogarithmicSeries 不用对数表,计算一个给定数的对数。

15题牛顿正弦及余弦级数Newton'sSineandCosineSeries

3


不用查表计算已知角的正弦及余弦三角函数。 16题正割与正切级数的安德烈推导法

Andre'sDerivationoftheSecantandTangentSeries n个数123,…,n的一个排列c1c2,…,cn中,如果没有一个元素ci的值介于两个邻近的值ci-1ci+1之间,则称c1c2,…,cn123,…,n的一个屈折排列。试利用屈折排列推导正割与正切的级数。

17题格雷戈里的反正切级数Gregory'sArcTangentSeries 已知三条边,不用查表求三角形的各角。 18题德布封的针问题Buffon'sNeedleProblem

在台面上画出一组间距为d的平行线,把长度为l(小于d的一根针任意投掷在台面上,问针触及两平行线之一的概率如何?

19题费马-欧拉素数定理

TheFermat-EulerPrimeNumberTheorem

每个可表示为4n+1形式的素数,只能用一种两数平方和的形式来表示。

20题费马方程TheFermatEquation

求方程x2dy2=1的整数解,其中d为非二次正整数。 21题费马-高斯不可能性定理

TheFermat-GaussImpossibilityTheorem 证明两个立方数的和不可能为一立方数。

4


22题二次互反律TheQuadraticReciprocityLaw (欧拉-勒让德-高斯定理)奇素数pq的勒让德互反符号取决于公式p/q·q/p=(-1[(p-1)/2]·[(q-1)/2] 23题高斯的代数基本定理

Gauss'FundamentalTheoremofAlgebra

每一个n次的方程zn+c1zn-1+c2zn-2+…+cn=0具有n个根。 24题斯图谟的根的个数问题Sturm'sProblemoftheNumberofRoots

求实系数代数方程在已知区间上的实根的个数。

25题阿贝尔不可能性定理Abel'sImpossibilityTheorem 高于四次的方程一般不可能有代数解法。 26题赫米特-林德曼超越性定理

TheHermite-LindemannTranscedenceTheorem

系数A不等于零,指数α为互不相等的代数数的表达式不可能等于零。

27题欧拉直线Euler'sStraightLine

在所有三角形中,外接圆的圆心,各中线的交点和各高的交点在一直线—欧拉线上,而且三点的分隔为:各高线的交点(垂心)至各中线的交点(重心)的距离两倍于外接圆的圆心至各中线的交点的距离。

28题费尔巴哈圆TheFeuerbachCircle

三角形中三边的三个中点、三个高的垂足和高的交点到各顶

5


点的线段的三个中点在一个圆上。 29题卡斯蒂朗问题Castillon'sProblem

将各边通过三个已知点的一个三角形内接于一个已知圆。 30题马尔法蒂问题Malfatti'sProblem

在一个已知三角形内画三个圆,每个圆与其他两个圆以及三角形的两边相切。

31题蒙日问题Monge'sProblem 画一个圆,使其与三已知圆正交。 32题阿波洛尼斯相切问题TheTangencyProblemofApollonius 画一个与三个已知圆相切的圆。

33题马索若尼圆规问题Macheroni'sCompassProblem 证明任何可用圆规和直尺所作的图均可只用圆规作出。 34题斯坦纳直尺问题Steiner'sStraight-edgeProblem 证明任何一个可以用圆规和直尺作出的图,如果在平面内给出一个定圆,只用直尺便可作出。 35题德里安倍立方问题

TheDeliaiiCube-doublingProblem

画出体积为一已知立方体两倍的立方体的一边。 36题三等分一个角TrisectionofanAngle 把一个角分成三个相等的角。

37题正十七边形TheRegularHeptadecagon

6


画一正十七边形。

38题阿基米德π值确定法

Archimedes'DeterminationoftheNumberPi

设圆的外切和内接正2vn边形的周长分别为avbv,便依次得到多边形周长的阿基米德数列:a0b0a1b1a2b2,…其中av+1avbv的调和中项,bv+1bvav+1的等比中项。假如已知初始两项,利用这个规则便能计算出数列的所有项。这个方法叫作阿基米德算法。 39题富斯弦切四边形问题

Fuss'ProblemoftheChord-TangentQuadrilateral 找出半径与双心四边形的外接圆和内切圆连心线之间的关系。(注:一个双心或弦切四边形的定义是既内接于一个圆而同时又外切于另一个圆的四边形) 40题测量附题AnnextoaSurvey

利用已知点的方位来确定地球表面未知但可到达的点的位置。

41题阿尔哈森弹子问题Alhazen'sBilliardProblem 在一个已知圆内,作出一个其两腰通过圆内两个已知点的等腰三角形。

42题由共轭半径作椭圆AnEllipsefromConjugateRadii 已知两个共轭半径的大小和位置,作椭圆。

43题在平行四边形内作椭圆AnEllipseinaParallelogram

7


在规定的平行四边形内作一内切椭圆,它与该平行四边形切于一边界点。

44题由四条切线作抛物线AParabolafromFourTangents 已知抛物线的四条切线,作抛物线。

45题由四点作抛物线AParabolafromFourPoints 过四个已知点作抛物线。

46题由四点作双曲线AHyperbolafromFourPoints 已知直角(等轴)双曲线上四点,作出这条双曲线。 47题范·施古登轨迹题VanSchooten'sLocusProblem 平面上的固定三角形的两个顶点沿平面上一个角的两个边滑动,第三个顶点的轨迹是什么?

48题卡丹旋轮问题Cardan'sSpurWheelProblem 一个圆盘沿着半径为其两倍的另一个圆盘的内缘滚动时,这个圆盘上标定的一点所描出的轨迹是什么? 49题牛顿椭圆问题Newton'sEllipseProblem

确定内切于一个已知(凸)四边形的所有椭圆的中心的轨迹。 50题彭赛列-布里昂匈双曲线问题ThePoncelet-BrianchonHyperbolaProblem

确定内接于直角(等边)双曲线的所有三角形的顶垂线交点的轨迹。

51题作为包络的抛物线AParabolaasEnvelope 从角的顶点,在角的一条边上连续n次截取任意线段e,在

8


另一条边上连续n次截取线段f并将线段的端点注以数字,从顶点开始,分别为012,…,nnn1,…,210。求证具有相同数字的点的连线的包络为一条抛物线。 52题星形线TheAstroid

直线上两个标定的点沿着两条固定的互相垂直的轴滑动,求这条直线的包络。

53题斯坦纳的三点内摆线

Steiner'sThree-pointedHypocycloid

确定一个三角形的华莱士(Wallace)线的包络。 54题一个四边形的最接近圆的外接椭圆

TheMostNearlyCircularEllipseCircumscribingaQuadrilateral

一个已知四边形的所有外接椭圆中,哪一个与圆的偏差最小?

55题圆锥曲线的曲率TheCurvatureofConicSections 确定一个圆锥曲线的曲率。

56题阿基米德对抛物线面积的推算Archimedes'SquaringofaParabola 确定包含在抛物线内的面积。

57题推算双曲线的面积SquaringaHyperbola 确定双曲线被截得的部分所含的面积。

58题求抛物线的长RectificationofaParabola

9


确定抛物线弧的长度。

59题笛沙格同调定理(同调三角形定理)

Desargues'HomologyTheorem(TheoremofHomologousTriangles)

如果两个三角形的对应顶点连线通过一点,则这两个三角形的对应边交点位于一条直线上。反之,如果两个三角形的对应边交点位于一条直线上,则这两个三角形的对应顶点连线通过一点。

60题斯坦纳的二重元素作图法Steiner'sDoubleElementConstruction

由三对对应元素所给定的重迭射影形,作出它的二重元素。 61题帕斯卡六边形定理Pascal'sHexagonTheorem 求证内接于圆锥曲线的六边形中,三双对边的交点在一直线上。

62题布里昂匈六线形定理Brianchon'sHexagramTheorem 求证外切于圆锥曲线的六线形中,三条对顶线通过一点。 63题笛沙格对合定理Desargues'InvolutionTheorem 一条直线与一个完全四点形*的三双对边的交点与外接于该四点形的圆锥曲线构成一个对合的四个点偶。一个点与一个完全四线形*的三双对顶点的连线和从该点向内切于该四线形的圆锥曲线所引的切线构成一个对合的四个射线偶。 *一个完全四点形(四线形)实际上含有四点(线)123

10


4和它们的六条连线交点231431241234;其中231431241234称为对边(对顶点) 64题由五个元素得到的圆锥曲线AConicSectionfromFiveElements

求作一个圆锥曲线,它的五个元素──点和切线──是已知的。

65题一条圆锥曲线和一条直线AConicSectionandaStraightLine

一条已知直线与一条具有五个已知元素──点和切线──的圆锥曲线相交,求作它们的交点。

66题一条圆锥曲线和一定点AConicSectionandaPoint 已知一点及一条具有五个已知元素──点和切线──的圆锥曲线,作出从该点列到该曲线的切线。 67题斯坦纳的用平面分割空间Steiner'sDivisionofSpacebyPlanes n个平面最多可将整个空间分割成多少份?

68题欧拉四面体问题Euler'sTetrahedronProblem 以六条棱表示四面体的体积。 69题偏斜直线之间的最短距离TheShortestDistanceBetweenSkewLines 计算两条已知偏斜直线之间的角和距离。 70题四面体的外接球

11


TheSphereCircumscribingaTetrahedron

确定一个已知所有六条棱的四面体的外接球的半径。 71题五种正则体TheFiveRegularSolids 将一个球面分成全等的球面正多边形。 72题正方形作为四边形的一个映象TheSquareasanImageofaQuadrilateral

证明每个四边形都可以看作是一个正方形的透视映象。 73题波尔凯-许瓦尔兹定理ThePohlke-SchwartzTheorem 一个平面上不全在同一条直线上的四个任意点,可认为是与一个已知四面体相似的四面体的各隅角的斜映射。 74题高斯轴测法基本定理

Gauss'FundamentalTheoremofAxonometry

正轴测法的高斯基本定理:如果在一个三面角的正投影中,把映象平面作为复平面,三面角顶点的投影作为零点,边的各端点的投影作为平面的复数,那么这些数的平方和等于零。

75题希帕查斯球极平面射影

Hipparchus'StereographicProjection

试举出一种把地球上的圆转换为地图上圆的保形地图射影法。

76题麦卡托投影TheMercatorProjection

画一个保形地理地图,其坐标方格是由直角方格组成的。

12


77题航海斜驶线问题TheProblemoftheLoxodrome 确定地球表面两点间斜驶线的经度。 78题海上船位置的确定

DeterminingthePositionofaShipatSea 利用天文经线推算法确定船在海上的位置。

79题高斯双高度问题Gauss'Two-AltitudeProblem 根据已知两星球的高度以确定时间及位置。

80题高斯三高度问题Gauss'Three-AltitudeProblem 从在已知三星球获得同高度瞬间的时间间隔,确定观察瞬间,观察点的纬度及星球的高度。 81题刻卜勒方程TheKeplerEquation 根据行星的平均近点角,计算偏心及真近点角。 82题星落StarSetting

对给定地点和日期,计算一已知星落的时间和方位角。 83题日晷问题TheProblemoftheSundial 制作一个日晷。

84题日影曲线TheShadowCurve

当直杆置于纬度φ的地点及该日太阳的赤纬有δ值时,确定在一天过程中由杆的一点投影所描绘的曲线。 85题日食和月食SolarandLunarEclipses

如果对于充分接近日食时间的两个瞬间太阳和月亮的赤经、赤纬以及其半径均为已知,确定日食的开始和结束,以及太

13


阳表面被隐蔽部分的最大值。 86题恒星及会合运转周期

SiderealandSynodicRevolutionPeriods

确定已知恒星运转周期的两共面旋转射线的会合运转周期。 87题行星的顺向和逆向运动

ProgressiveandRetrogradeMotionofPlanets

行星什么时候从顺向转为逆向运动(或反过来,从逆向转为顺向运动)?

88题兰伯特慧星问题Lambert'sCometProlem

借助焦半径及连接弧端点的弦,来表示慧星描绘抛物线轨道的一段弧所需的时间。

89题与欧拉数有关的斯坦纳问题

Steiner'sProblemConcerningtheEulerNumber 如果x为正变数,x取何值时,xx次方根为最大? 90题法格乃诺关于高的基点的问题Fagnano'sAltitudeBasePointProblem

在已知锐角三角形中,作周长最小的内接三角形。 91题费马对托里拆利提出的问题Fermat'sProblemforTorricelli

试求一点,使它到已知三角形的三个顶点距离之和为最小。 92题逆风变换航向TackingUnderaHeadwind 帆船如何能顶着北风以最快的速度向正北航行?

14


93题蜂巢(雷阿乌姆尔问题)TheHoneybeeCell(ProblembyReaumur)

试采用由三个全等的菱形作成的顶盖来封闭一个正六棱柱,使所得的这一个立体有预定的容积,而其表面积为最小。 94题雷奇奥莫塔努斯的极大值问题Regiomontanus'MaximumProblem

在地球表面的什么部位,一根垂直的悬杆呈现最长?(即在什么部位,可见角为最大?)

95题金星的最大亮度TheMaximumBrightnessofVenus 在什么位置金星有最大亮度?

96题地球轨道内的慧星ACometInsidetheEarth'sOrbit 慧星在地球的轨道内最多能停留多少天? 97题最短晨昏蒙影问题

TheProblemoftheShortestTwilight

在已知纬度的地方,一年之中的哪一天晨昏蒙影最短? 98题斯坦纳的椭圆问题Steiner'sEllipseProblem 在所有能外接(内切)于一个已知三角形的椭圆中,哪一个椭圆有最小(最大)的面积?

99题斯坦纳的圆问题Steiner'sCircleProblem 在所有等周的(即有相等周长的)平面图形中,圆有最大的面积。反之:在有相等面积的所有平面图形中,圆有最小的周长。

15


100题斯坦纳的球问题Steiner'sSphereProblem 在表面积相等的所有立体中,球具有最大体积。在体积相等的所有立体中,球具有最小的表面积

16


本文来源:https://www.wddqxz.cn/63a4dfe4d938376baf1ffc4ffe4733687e21fcbd.html

微信扫码分享

相关推荐