【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《梅涅劳斯(Menelaus)定理》,欢迎阅读!
梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1
证明一:
过点A作AG∥BC交DF的延长线于G,
则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。
三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1
证明二:
过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF 所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1
它的逆定理也成立:若有三点F、D、E分别在△ABC的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。
梅涅劳斯(Menelaus)定理
证明三:
过ABC三点向三边引垂线AA'BB'CC',
所以AD:DB=AA':BB',BE:EC=BB':CC',CF:FA=CC':AA' 所以(AF/FB)×(BD/DC)×(CE/EA)=1
证明四:
连接BF。
(AD:DB)·(BE:EC)·(CF:FA)
=(S△ADF:S△BDF)·(S△BEF:S△CEF)·(S△BCF:S△BAF) =(S△ADF:S△BDF)·(S△BDF:S△CDF)·(S△CDF:S△ADF) =1
此外,用定比分点定义该定理可使其容易理解和记忆:
在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。于是L、M、N三点共线的充要条件是λμν=1。 第一角元形式的梅涅劳斯定理
如图:若E,F,D三点共线,则
(sin∠ACF/sin∠FCB)(sin∠BAD/sin∠DAC)(sin∠CBA/sin∠ABE)=1 即图中的蓝角正弦值之积等于红角正弦值之积 该形式的梅涅劳斯定理也很实用 第二角元形式的梅涅劳斯定理
在平面上任取一点O,且EDF共线,则(sin∠AOF/sin∠FOB)(sin∠BOD/sin∠DOC)(sin∠COA/sin∠AOE)=1。(O不与点A、B、C重合)
[编辑本段] 记忆
ABC为三个顶点,DEF为三个分点 (AF/FB)×(BD/DC)×(CE/EA)=1
(顶到分/分到顶)*(顶到分/分到顶)*(顶到分/分到顶)=1 空间感好的人可以这么记:(上1/下1)*(整/右)*(下2/上2)=1
[编辑本段] 实际应用
为了说明问题,并给大家一个深刻印象,我们假定图中的A、B、C、D、E、F是六个旅游景点,各景点之间有公路相连。我们乘直升机飞到这些景点的上空,然后选择其中的任意一个景点降落。我们换乘汽车沿公路去每一个景点游玩,最后回到出发点,直升机就停在那里等待我们回去。
我们不必考虑怎样走路程最短,只要求必须“游历”了所有的景点。只“路过”而不停留观赏的景点,不能算是“游历”。 例如直升机降落在A点,我们从A点出发,“游历”了其它五个字母所代表的景点后,最终还要回到出发点A。 另外还有一个要求,就是同一直线上的三个景点,必须连续游过之后,才能变更到其它直线上的景点。 从A点出发的旅游方案共有四种,下面逐一说明:
方案 ① ——从A经过B(不停留)到F(停留),再返回B(停留),再到D(停留),之后经过B(不停留)到C(停留),再到E(停留),最后从E经过C(不停留)回到出发点A。
本文来源:https://www.wddqxz.cn/615e3785ec3a87c24028c451.html