【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《微积分极限思想推导圆周长面积公式》,欢迎阅读!
圆周长公式推导
1.积分法
在平面直角坐标下圆的方程是x^2 + y^2 = r^2 这可以写成参数方程 x = r * Cos t y = r * Sin t t∈[0, 2π] 于是圆周长就是
C = ∫(0到2π)√( (x'(t))^2 + (y'(t))^2 ) dt (Q:此处x,y对t为什么都要导?
A: 将一个圆的周长分成n份,x'(t)=△x=xn-x(n-1), y'(t)=△y=yn-y(n-1).当n→∞,△x,△y→0时,可将每一份以直代曲,即每一份的长度C/n=√(△x^2+△y^2)= √( (x'(t))^2 + (y'(t))^2 ).所以C就是√( (x'(t))^2 + (y'(t))^2 )从0到2π的积分.虽然不导得出的结果是一样的,但原理方面就解释不通了.) =∫(0到2π)√( (-rSint)^2 + (rCost)^2 ) dt =∫(0到2π) r dt
= 2πr 2.极限法
在圆内做内接等n边形,
求等n边形周长:可以分割成n个以圆心为顶点的三角形, 其底边长为 2*r*sin(π/n) ,所以等n边形周长为 n*2*r*sin(π/n) 这个周长对n→∞求极限
lim[n*2*r*sin(π/n)]
运用等价无穷小规则,当x→0时,有sinx→x 所以lim[n*2*r*sin(π/n)] =lim[n*2*r*π/n]=2πr.
圆面积公式推导
应用圆周长C = 2π r
1. 可以将圆分成两个半圆两个半圆,再将两个半圆分成无数个面积相等的扇形并展开,在拼接起来,底边可以以直代曲,那么就是一个底边长为πr,高为r的矩形。这是小学的推导法,但有微积分的思想在其中。
2. 积分法
可将圆看成由无数个同心圆环组成. 设圆半径为R,里面的同心圆环半径为r,为自变量.设每个圆环厚度为dr→0,则圆环周长可看为2πr,圆面积为所有这些圆环的面积之和.所以S = ∫ 2πr dr,从0积到R.
所以S=2π[1/2(R^2-0^2)]= πR^2.(球体积公式推导方法中的“球壳法 Shell Method”与此法是类似的.)
不应用圆周长C = 2π r
1. 积分法
(1) 圆方程为x^2+y^2=r^2.只需算出第一象限(0积到r),然后乘以4.方法和求曲边梯形面积类似,具体不再叙述.
(2)我们回过头来看到上面周长推导中的Q和A. C/n=√(△x^2+△y^2)= √( (x'(t))^2 + (y'(t))^2 ),每份C/n与两条半径组成的扇形的底面曲边是可以以直代曲的,那每个小扇
本文来源:https://www.wddqxz.cn/5eca820164ec102de2bd960590c69ec3d5bbdb9a.html