【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《假设检验的基本步骤》,欢迎阅读!
假设检验的基本步骤
(三)假设检验的基本步骤 统计推断
1.建立假设检验,确定检验水准
H0和H1假设都是对总体特征的检验假设,相互联系且对立。 H0总是假设样本差别来自抽样误差,无效/零假设 H1是来自非抽样误差,有单双侧之分,备择假设。 检验水准,a=0.05 检验水准的含义
2.选定检验方法,计算检验统计量
选择和计算检验统计量要注意资料类型和实验设计类型及样本量的问题, 一般计量资料用t检验和u检验; 计数资料用χ2检验和u检验。 3.确定P值,作出统计推理 P≤a ,拒绝H0,接受H1
P> a,按a=0.05水准,不拒绝H0,无统计学意义或显著性差异
假设检验结论有概率性,无论使拒绝或不拒绝H0,都有可能发生错误 (四)两均数的假设检验(各种假设检验方法的适用条件及假设的特点、计算公式、自由度确定以及确定概率P值并做出推断结论)
u检验适用条件 t检验适用条件 t检验和u检验
1.样本均数与总体均数比较
2.配对资料的比较/成组设计的两样本均数的比较 配对设计的情况:3点 3. 两个样本均数的比较
(1)两个大样本均数比较的u检验 (2)两个小样本均数比较的t检验
(五)假设检验的两类错误及注意事项(Ⅰ和Ⅱ类错误) 1.两类错误
拒绝正确的H0称Ⅰ型错误-弃真,用检验水准α表示,α=0.05,犯I型错误概率为0.05,理论上平均每100次抽样有5次发生此类错误;
接受错误的H0称Ⅱ型错误-存伪。用β表示,(1-β)为检验效能或把握度,意义为两总体有差异,按α水准检出差别的能力,1-β=0.9,若两总体确有差别,理论上平均每100次抽样有90次得出有差别的结论。
两者的关系:α愈大β愈小;反之α愈小β愈大。 2.假设检验中的注意事项
(1)随机化:代表性和均衡可比性 (2)选用适当的检验方法 (3)正确理解统计学意义 (4)结论不绝对
(5)单侧与双侧检验的选择
四.分类变量资料的统计描述 (一)相对数常用指标及其意义 1.率
2.构成比 3.相对比
(二)相对数应用注意事项 1.观察例数要足够多
2.不能犯以比代率的错误 3.计算加权平均率或合并率
4.可比性,消除混杂因素的影响(可采用标准化方法或分层分析方法。) 6.样本估计总体,假设检验
五. 分类变量资料的统计推断
(一)率的抽样误差、总体率的可信区间及其估计方法 1.率的抽样误差与标准误 率的标准误计算
2.总体率的可信区间及估计方法
(1)正态近似法:n足够大, P或1-P 均不太小,nπ和n(1-π)均大于 5,或nP和n(1-P)均大于5
95%可信区间:P±1.96SP 99%可信区间:P±2.58SP
(2)查表法 n较小,n≤50,P接近于0或1 (二)u检验和χ2检验 1. u检验:适用条件
(1)样本率与总体率比较 (2)两个样本率比较 2.χ2检验 (1)χ2检验
适用范围:两个及两个以上率或构成比的比较;两分类变量间相关关系分析 四格表资料
四格表资料基本数据的构成,一定是相互对立的两组数据。四格表资料自由度永远为1。
a c a+c
b d b+d
a+b c+d a+b+c+d
(2)四格表资料的χ2检验
R行 C列的理论数:TRC =(nR × nC)/ n
n>40 且每个格子 T>5,可用基本公式或专用公式,不用校正; n>40 但是出现只要有一个格子 1,用校正值公式 n<40 ,或T<1,用直接概率法 (3)配对四格表资料的χ2检验
222
两个率的比较采用u检验,亦可采用χ检验,两者关系为u=χ。 (4)行X列表资料χ2检验 R>2,C=2;R>2,C>2
本文来源:https://www.wddqxz.cn/5da34af8350cba1aa8114431b90d6c85ed3a8851.html