【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《统计学案例分析》,欢迎阅读!
1、 中国的轿车生产是否与GDP、城镇居民人均可支配收入、城镇
居民家庭恩格尔系数、私人载客汽车拥有量、公路里程等都有密切关系?如果有关系,它们之间是种什么关系?关系强度如何?
(1) 分析轿车生产量与私人载客汽车拥有量之间的关系:
首先,求的因变量轿车生产量y和自变量私人载客汽车拥有量x1的相关系数r=0.992018,说明两者间存在一定的线性相关关系且正相关程度很强。
然后以轿车生产量为因变量y,私人载客汽车拥有量x1为自变量进行一元线性回归分析,结果如下:
①由回归统计中的R=0。984101看出,所建立的回归模型对样本观测值的拟合程度很好; ②估计出的样本回归函数为:ŷ=1。775687+0。206783 x1,说明私人载客汽车拥有量每增加1万辆,轿车生产量增加2067。83辆;
③由上表中â和的p值分别是0.709481543和6。60805E-15,显然â的p值大于显著性水平α=0。05,不能拒绝原假设α=0,而的p值远小于显著性水平α=0.05,拒绝原假设β=0,说明私人载客汽车拥有量对轿车生产量有显著影响。
(2) 分析轿车生产量与城镇居民家庭恩格尔系数之间的关系:
首先,求的因变量轿车生产量y和自变量城镇居民家庭恩格尔系数x2的相关系数r=—0.77499,说明两者间存在一定的线性相关关系但负相关程度一般。
然后以轿车生产量为因变量y,城镇居民家庭恩格尔系数x2为自变量进行一元线性回归分析,结果如下:
由回归统计中的R=0。600608看出,所建立的回归模型对样本观测值的拟合程度一般,综合其相关系数值可知此二者关系不太符合所建立的线性模型,说明二者间没有密切的线性相关关系.
(3) 分析轿车生产量与公路里程之间的关系:
首先,求的因变量轿车生产量y和自变量公路里程x3的相关系数r=0。941214,说明两者间存在一定的线性相关关系且正相关程度较强。
然后以轿车生产量为因变量y,公路里程x3为自变量进行一元线性回归分析,结果如下:
①由回归统计中的R=0.885883看出,所建立的回归模型对样本观测值的拟合程度较好; ②估计出的样本回归函数为:ŷ=-125。156+1.403022 x3,说明公路里程每增加1万公里,轿车生产量增加1。403022万辆;
③由上表中â和的p值分别是5。64E-05和1。82E-08,显然â和的p值均远小于显著性水平α=0。05,拒绝原假设α=0、β=0,但由于β对两者的影响更为显著,所以可以说明公路里程对轿车生产量有显著影响。
(4) 分析轿车生产量与GDP之间的关系:
首先,求的因变量轿车生产量y和自变量GDP x4的相关系数r=0.939995,说明两者间存在一定的线性相关关系且正相关程度较强。
然后以轿车生产量为因变量y,GDP x4为自变量进行一元线性回归分析,结果如下:
①由回归统计中的R=0.88359看出,所建立的回归模型对样本观测值的拟合程度较好;
②估计出的样本回归函数为:ŷ=-70.7127+0。001829x4,说明GDP每增加1亿元,轿车生产量增加18.29辆;
③由上表中â和的p值分别是0。001534和2。11E-08,显然â和的p值均小于显著性水平α=0.05,拒绝原假设α=0、β=0,但由于β对两者的影响更为显著,所以可以说明GDP对轿车生产量有较显著影响。
(5) 分析轿车生产量与城镇居民人均可支配收入x5之间的关系:
首先,求的因变量轿车生产量y和自变量城镇居民人均可支配收入x5的相关系数r=0.917695,说明两者间存在一定的线性相关关系且正相关程度较强。
然后以轿车生产量为因变量y,城镇居民人均可支配收入x5为自变量进行一元线性回归分析,结果如下:
①由回归统计中的R=0.842164看出,所建立的回归模型对样本观测值的拟合程度较好; ②估计出的样本回归函数为:ŷ=-92.9054+0.032928x5,说明城镇居民人均可支配收入每增加1元,轿车生产量增加329。28辆;
③由上表中â和的p值分别是0。001444和2。12E-07,显然â和的p值均小于显著性水平α=0.05,拒绝原假设α=0、β=0,但由于β对两者的影响更为显著,所以可以说明城镇居民人均可支配收入对轿车生产量有显著影响。
本文来源:https://www.wddqxz.cn/547a41e2fa0f76c66137ee06eff9aef8941e4890.html