函数周期性公式大总结

2023-02-08 14:06:10   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《函数周期性公式大总结》,欢迎阅读!
周期性,公式,函数,总结


1Fx + a=-fx)周期为2A。在本文中,我们证明(F + x= 2a-fx= F-XF-X

2SiNx的功能周期公式为t = 2π。 SiNx是正弦函数,周期

3cosx的函数周期公式为t = 2π,cosx为余弦函数,周期2π。

4TaNxCotx的周期公式为t =π,TaNxCotx分别为切线和Cotx

5secxCSCX的周期公式为t = 2π,secxCSCXsecx和余割。

扩展数据:

以下方法分为几个步骤

1)确定Fx)的域是否有界;

2)根据函数周期的定义,我们可以知道非零实数T在关系fx + T= fx)中与X无关,因此可以求解方程fx-fx= 0,如果我们可以求解独立于X的非零常数t,则可以得出结论:函fx)是周期函数,如果不存在t,则f x)是非周期性函数。

3)通常用相反的证明方法证明。 (如果fx)是周期函数,则推论矛盾,因此fx)是非周期函数。

示例:证明fx= ax + B(a≠0)是一个非周期函数。 证明如果fx= ax + B是周期函数,则存在t(≠0),使其成立。 Ax + T+ B = ax + Bax +AX = 0,在at = 0a≠0,






t = 0t≠0矛盾的情况下,﹤fx)是一个非周期函数。 示例:证明fx= ax + B是一个非周期函数。

证明:如果fx)是周期函数,则必须有一个t(≠0)对,并且必须有(x + T= fx。当x = 0时,fx= 0,但是x + T≠0,νf(x + T= 1,νf(x + T)≠f(x)且fx + T= f x




本文来源:https://www.wddqxz.cn/4db364490aa1284ac850ad02de80d4d8d15a01a3.html

相关推荐