【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《高考数学正弦定理知识点总结》,欢迎阅读!
高考数学正弦定理知识点总结
高中数学正弦定理知识点总结一 正弦定理的应用领域
在解三角形中,有以下的应用领域: 1已知三角形的两角与一边,解三角形
2已知三角形的两边和其中一边所对的角,解三角形 3运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦 正弦定理
在△ABC中,角A、B、C所对的边分别为a、b、c,则有a/sinA=b/sinB=c/sinC=2R其中R为三角形外接圆的半径 正弦定理的变形公式
1 a=2RsinA, b=2RsinB, c=2RsinC;
2 sinA : sinB : sinC = a : b : c; 在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题
3相关结论: a/sinA=b/sinB=c/sinC=a+b/sinA+sinB=a+b+c/sinA+sinB+sinC c/sinC=c/sinD=BD=2RR为外接圆半径
4设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90°时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形 sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA 5a=bsinA/sinB sinB=bsinA/a 高中数学正弦定理知识点总结二 一、正弦定理变形的应用
1.2021山东威海高二期中,4已知△ABC的三个内角之比为AB∶C=3∶2∶1,那么对应的三边之比ab∶c等于
A.32∶1 B.∶2∶1 C.∶1 D.2∶∶1 答案:D
解析:A∶B∶C=3∶2∶1,∴B=2C,A=3C,再由A+B+C=π,可得C=,故A=,B=,C=. a∶b∶c=sin A∶sin B∶sin C=1∶=2∶∶1.故选D. 3.在△ABC中,A=60°,a=3,则等于 A. B. C. D.2 答案:D
解析:利用正弦定理及比例性质,得 =2.
二、利用正弦定理解三角形
4.2021山东潍坊四县联考,2在△ABC中,已知a=8,B=60°,C=75°,则b等于 A.4 B.4 C.4 D. 答案:A
解析:B=60°,C=75°, ∴A=180°-60°-75°=45°. ∴由正弦定理可得b==4. 故选A.
5.在△ABC中,三个内角A,B,C的对边分别为a,b,c.已知a=,b=,B=60°,那么A= A.45° B.135° C.45°或135° D.60° 答案:A
解析:由正弦定理可得sin A=,但ab,∴A=60°或A=120°. 8.在△ABC中,已知a=5,B=120°,C=15°,求此三角形最大的边长.
本文来源:https://www.wddqxz.cn/3b49c74dd6d8d15abe23482fb4daa58da1111c49.html