【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《数学教案-余角和补角》,欢迎阅读!
数学教案-余角和补角
一、教学目标:
⑴在具体情景中了解余角与补角,懂得余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。
⑵经历观察、操作、推理、交流等活动,发展学生的几何概念,培养学生的推理能力和表达能力。
⑶体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。
二、教学重点、难点: 余角与补角的性质 三、教学过程(): 复习、引入:
⑴复习角的定义。你知道有哪些特殊的角?
⑵用量角器量一量图中每组两个角的度数,并求出它们的和。 你有什么发现? 新课:
由学生的发现,给出余角和补角的定义(文字叙述)。 并且用数学符号语言进行理解。 问题1:如何求一个角的余角和补角。 ①∠1的余角:90°-∠1 ②∠α的补角:180°-∠α 练习:填表(求一个角的.余角、补角)
拓广:观察表格,你发现α的余角和α的补角有什么关系? 如何进行理论推导?
结论:α的补角比α的余角大90° α一定是锐角
钝角没有余角,但一定有补角。
问题2:①如果∠1与∠2互余,∠3与∠4互余,并且∠1=∠3,那么∠2
和∠4什么关系?为什么? (学生讨论,请一人回答)
②如果∠1与∠2互补,∠3与∠4互补,并且∠1=∠3, 那么∠2和∠4什么关系?为什么? 结论:性质:①等角的余角相等。 ②等角的补角相等。
练习:看图找互余的角和互补的角,以及相等的角。 结论:直角的补角是直角。凡是直角都相等。 解决实际问题:
在长方形的台球桌面上,选择适当的角度击打白球,可以使白球经过两次反弹后将黑球直接撞入袋中。此时∠1=∠2,∠3=∠4,并且∠2+∠3=90°,∠4+∠5=90°。如果黑球与洞口的连线和台球桌面边缘的夹角∠5=40°,那么∠1应等于多少度才能保证黑球准确入袋?请说明理由。 (学生小组讨论,应用所学知识解决此问题) 小结:
⑴这节课,使我感受最深的是…… ⑵这节课,我感到最困难的是…… ⑶这节课,我学会了…… ⑷这节课,我发现生活中…… ⑸这节课,我想我将…… (学生思考作答) 作业:目标检测P64, 书P139-6(写书上), 书P147-9,10(写本上)
本文来源:https://www.wddqxz.cn/387126bd03f69e3143323968011ca300a7c3f612.html