【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《九年级数学上册第23章图形的相似23.2相似图形导学案新版华东师大版》,欢迎阅读!
23.2 相似图形
【学习目标】
1、 探索并掌握相似多边形的性质。 2、 解两个多边形相似的判定方法。 【学习重难点】 相似多边形的性质 【学习过程】 一、课前准备
1、怎样的图形是相似图形? 2、什么是成比例线段?
3、两个相似的平面图形之间有什么关系呢?为什么有些图形是相似的,而有些不是呢?相似图形有什么主要性质呢?
二、学习新知 自主学习:
图中两个四边形是相似形,仔细观察这两个图形,它们的对应边之间是否为比例线段的关系呢?对应角之间又有什么关系?〔提示:为了验证你的猜测是否正确,可以用刻度尺和量角器量量看。〕
再看看图中两个相似的五边形,是否与你观察图所得到的结果一样?
3、 交流合作,大胆猜测在**动手的根底上,进行交流与合作,并大胆地猜测结果。 4、概括总结,确认猜测
1
概 括:
由此可以得到两个相似多边形的特征: 对应边成比例,对应角相等。
实际上这也是我们识别两个多边形是否相似的方法,即如果_____________________________________,那么这两个多边形相似。
提醒:这就是我们判定两个多边形是否相似的判定方法。 想一想:如果两个多边形的边数不同呢?
实例分析:
例1、如下图的相似四边形中,求未知边x、 y的长度和角度a的大小。
图18.2.4
解:由于两个四边形相似,它们的对应边成比例,对应角相等,所以
18y
47
解得
x = , y = 。
a = 360°-〔 〕= 。
【随堂练习】
1、两个相似多边形的最长边分别为10cm和20cm,其中一个多边形的最短边长5 cm,另一个多边形的最短边长为__________________.
2、在相同时刻的物高与影长成比例,如果一古塔在地面上的影长为50m,同时,高为1.5m的竿的影长为2.5m,那么古塔的高为____________m.
3、□ABCD与□A'B'C'D'中,AB=3,BC=5,∠B=40°,A′B′=6,要使□ABCD与□
A'B'C'D'相似,那么B′C′=_______,∠B′=_______.
4、如图,等腰梯形ABCD与等腰梯形A′B′C′D′相似,∠A′=65°,A′B′=6 cm,,
2
AB=8 cm,AD=5 cm,试求梯形ABCD的各角的度数与A′D′、B′C′的长.
D
C
D'
C'
AB
A'
B'
【中考连线】
如图,梯形ABCD中,AD∥BC,E是AB上的一点,EF∥BC,并且EF将梯形ABCD分成的两个梯形AEFD、EBCF相似,假设AD=4,BC=9,求AE∶EB.
【参考答案】 随堂练习 1、10cm或中考连线
515cm 2、x=30 3、B’C’=10 4、B’C’=A’D’=cm 24
AE2 EB3
3
本文来源:https://www.wddqxz.cn/33595bf1fbc75fbfc77da26925c52cc58bd69035.html