2020考研数学冲刺:必知21个思维定势

2023-01-29 09:02:37   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《2020考研数学冲刺:必知21个思维定势》,欢迎阅读!
定势,冲刺,思维,考研,数学
2020考研数学冲刺:必知21个思维定势

所谓思维定势,就是按照积累的思维活动经验教训和已有的思维规律,在反复使用中所形成的比较稳定的、定型化了的思维思维定势路线、方式、程序、模式。

第一部分《高数解题的四种思维定势》

1.在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。

2.在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。

3.在题设条件中函数f(x)[ab]上连续,在(ab)内可导,且f(a)=0f(b)=0f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。

4.对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。 第二部分《线性代数解题的八种思维定势》

1.题设条件与代数余子式AijA*相关,则立即联想到用行列式按行()展开定理以及AA*=A*A=|A|E

2.若涉及到AB是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。

4.若要证明一组向量a1a2,…,as线性无关,先考虑用定义再说。

5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。


6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。

7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。

8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

第三部分《概率与数理统计解题的九种思维定势》

1.如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式。 2.若给出的试验可分解成(0-1)n重独立重复试验,则马上联想Bernoulli试验,及其概率计算公式。

3.若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组。 4.若题设中给出随机变量X~N则马上联想到标准化X~N(01)来处理相关问题。

5.求二维随机变量(XY)的边缘分布密度的问题,应该马上联想到先画出使联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而Y的求法类似。

6.欲求二维随机变量(XY)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Y≥g(X)或(Y≤g(X))的区域的公共部分。

7.涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X(0-1)分解。


本文来源:https://www.wddqxz.cn/3240a48db107e87101f69e3143323968001cf478.html

相关推荐