【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《Matlab解热传导方程代码》,欢迎阅读!
Sample MATLAB codes 1.
%Newton Cooling Law
clear; close all; clc;
h = 1;
T(1) = 10; %T(0) error = 1; TOL = 1e-6; k = 0;
dt = 1/10;
while error > TOL, k = k+1;
T(k+1) = h*(1-T(k))*dt+T(k); error = abs(T(k+1)-T(k)); end
t = linspace(0,dt*(k+1),k+1);
plot(t,T),hold on, plot(t,1,'r-.') xlabel('Time'),ylabel('Temperature'),
title(['T_0 = ',num2str(T(1)), ', T_\infty = 1']), legend('Cooling Trend','Steady State')
2.
%Boltzman Cooling Law clear; close all; clc;
h = 1;
T(1) = 10; %T(0) error = 1; TOL = 1e-6; k = 0;
dt = 1/10000;
while error > TOL, k = k+1;
T(k+1) = h*(1-(T(k))^4)*dt+T(k); error = abs(T(k+1)-T(k)); end
t = linspace(0,dt*(k+1),k+1);
plot(t,T),hold on, plot(t,1,'r-.') xlabel('Time'),ylabel('Temperature'),
title(['T_0 = ',num2str(T(1)), ', T_\infty = 1']), legend('Cooling Trend','Steady State')
3.
%Fourier Heat conduction
clear; close all; clc;
h = 1; n = 11;
T = ones(n,1); Told = T; T(1) = 1; %Left boundary T(n) = 10; %Right boundary x = linspace(0,1,n); dx = x(2)-x(1);
dt = dx^2/3; %cfl condition
error = 1; TOL = 1e-6; k = 0;
while error > TOL, Told = T; k = k+1;
for i = 2:n-1
T(i) = dt*(Told(i+1)-2*Told(i)+Told(i-1))/dx^2+Told(i); end
error = max(abs(T-Told));
if mod(k,5)==0, out(k,:) = T; end end
plot(x,out)
xlabel('x'),ylabel('Temperature'), title(['Fourier Heat Conduction']), %legend('Cooling Trend','Steady State')
4. 2D Heat Equation
%2D Heat Equation. clear; close all; clc
n = 10; %grid has n - 2 interior points per dimension (overlapping) x = linspace(0,1,n); dx = x(2)-x(1); y = x; dy = dx; TOL = 1e-6; T = zeros(n);
T(1,1:n) = 10; %TOP T(n,1:n) = 1; %BOTTOM T(1:n,1) = 1; %LEFT T(1:n,n) = 1; %RIGHT dt = dx^2/4;
error = 1; k = 0;
while error > TOL k = k+1; Told = T; for i = 2:n-1
for j = 2:n-1
T(i,j) = dt*((Told(i+1,j)-2*Told(i,j)+Told(i-1,j))/dx^2 ... + (Told(i,j+1)-2*Told(i,j)+Told(i,j-1))/dy^2) ... + Told(i,j); end end
error = max(max(abs(Told-T))); end
subplot(2,1,1),contour(x,y,T),
title('Temperature (Steady State)'),xlabel('x'),ylabel('y'),colorbar subplot(2,1,2),pcolor(x,y,T),shading interp,
title('Temperature (Steady State)'),xlabel('x'),ylabel('y'),colorbar
5. Wave Translation
%Oscillations - translation left and right clear; close all; clc; for c = [1 -1] cc = 0; n = 261;
x = linspace(0,13,n); u = zeros(n,1);
u(121:141) = sin(pi*x(121:141)); dx = x(2)-x(1); dt = dx; error = 1; TOL = 1e-6;
k = 0;
while k < 110 uold = u; k = k+1;
for i = 2:n-1
if c == 1, u(i) = dt*c*(uold(i+1)-uold(i))/dx+uold(i); end %c = 1 if c == -1, u(i) = dt*c*(uold(i)-uold(i-1))/dx+uold(i); end %c = -1 end
error = max(abs(u-uold));
if mod(k,10)==0, cc = cc+1; out(cc,:) = u; end end
if c == 1
subplot(2,1,1), for hh = 1:cc
plot(x,out(hh,:)+hh),hold on, end
u = zeros(n,1);
u(121:141) = sin(pi*x(121:141)); plot(x,u) xlabel('u(x)'),ylabel('Time'), title('Translation to the Left') elseif c == -1 subplot(2,1,2), for hh = 1:cc
plot(x,out(hh,:)+hh),hold on, end
u = zeros(n,1);
u(121:141) = sin(pi*x(121:141)); plot(x,u) xlabel('u(x)'),ylabel('Time'), title('Translation to the Right') end end
6.
%wave equation
clear; close all; clc; c = 1; n = 21;
x = linspace(0,1,n); dx = 1/(n-1); dt = dx;
u(:,1) = sin(pi*x); u(1,2) = 0; for i = 2:n-1
u(i,2) = 0.5*(dt^2*c^2*(u(i+1,1)-2*u(i,1)+u(i-1,1))/dx^2+2*u(i,1)); end
u(n,2) = 0;
error = 1; k = 1; while k < 100 k = k+1;
u(1,k+1) = 0; for i = 2:n-1
u(i,k+1) = dt^2*c^2*(u(i+1,k)-2*u(i,k)+u(i-1,k))/dx^2+2*u(i,k)-u(i,k-1); end
u(n,k+1) = 0; end
plot(x,u), xlabel('x'),ylabel('y')
本文来源:https://www.wddqxz.cn/1b05b205ee630b1c59eef8c75fbfc77da3699746.html