【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《部编人教版七年级下册数学2.1第2课时《垂线》教案》,欢迎阅读!
第2课时 垂 线
1.理解并掌握垂线的概念及性质,了解点到直线的距离;
2.能够运用垂线的概念及性质进行运算并解决实际问题.(重点,难点)
一、情境导入
如图是教室的一幅图片,黑板相邻两边的夹角等于多少度?这样的两条边所在的直线有什么位置关系?
二、合作探究 探究点一:垂 线
【类型一】 运用垂线的概念求角度
如图,直线BC与MN相交于点O,AO⊥BC,∠BOE=∠NOE,若∠EON=20°,求∠AOM
和∠NOC的度数.
解析:要求∠AOM的度数,可先求它的余角∠COM.由已知∠EON=20°,结合∠BOE=∠NOE,即可求得∠BON.再根据“对顶角相等”即可求得∠COM的度数;要求∠NOC的度数,根据邻补角的定义即可.
解:∵∠BOE=∠NOE,∴∠BON=2∠EON=2×20°=40°,∴∠NOC=180°-∠BON=180°-40°=140°,∠MOC=∠BON=40°.∵AO⊥BC,∴∠AOC=90°,∴∠AOM=∠AOC-∠MOC=90°-40°=50°,∴∠NOC=140°,∠AOM=50°.
方法总结:(1)由两条直线互相垂直可以得出这两条直线相交所成的四个角中,每一个角都等于90°;(2)在相交线中求角度,一般要利用垂直、对顶角相等、余角、补角等知识.
【类型二】 运用垂线的概念判定两直线垂直
如图所示,已知OA⊥OC于点O,∠AOB=∠COD.试判断OB和OD的位置关系,并说明理
由.
解析:由于OA⊥OC,根据垂直的定义,可知∠AOC=90°,即∠AOB+∠BOC=90°.又∠AOB=
∠COD,则∠COD+∠BOC=90°,即∠BOD=90°.再根据垂直的定义,得出OB⊥OD.
解:OB⊥OD.理由如下:因为OA⊥OC,所以∠AOC=90°,即∠AOB+∠BOC=90°.因为∠AOB=∠COD,所以∠COD+∠BOC=90°,所以∠BOD=90°,所以OB⊥OD.
方法总结:由垂直这一条件可得两条直线相交构成的四个角为直角,反过来,由两条直线相交构成的角为直角,可得这两条直线互相垂直.判断两条直线垂直最基本的方法就是说明这两条直线的夹角等于90°.
探究点二:垂线的性质(垂线段最短)
如图所示,修一条路将A,B两村庄与公路MN连起来,怎样修才能使所修的公路最短?画出
线路图,并说明理由.
解析:连接AB,过点B作BC⊥MN即可.
解:连接AB,作BC⊥MN,C是垂足,线段AB和BC就是符合题意的线路图.因为从A到B,线段AB最短,从B到MN,垂线段BC最短,所以AB+BC最短.
方法总结:与垂线段有关的作图,一般是过一点作已知直线的垂线,作图的依据是“垂线段最短”. 探究点三:点到直线的距离
如图,AC⊥BC,AC=3,BC=4,AB=5.
(1)试说出点A到直线BC的距离;点B到直线AC的距离; (2)点C到直线AB的距离是多少?
解析:(1)点A到直线BC的距离就是线段AC的长;点B到直线AC的距离就是线段BC的长;(2)过点C作CD⊥AB,垂足为D.点C到直线AB的距离就是线段CD的长,可利用面积求得.
解:(1)点A到直线BC的距离是3;点B到直线AC的距离是4;
1112(2)过点C作CD⊥AB,垂足为D.S△ABC=BC·AC=AB·CD,所以5CD=3×4,所以CD=.所
225
12
以点C到直线AB的距离为.
5
方法总结:点到直线的距离是过这一点作已知直线的垂线,垂线段的长度才是这一点到直线的距离.
三、板书设计
本文来源:https://www.wddqxz.cn/05b8d299a68da0116c175f0e7cd184254b351b8b.html