数学必修二第二章经典证明题

2022-02-28 21:40:15   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《数学必修二第二章经典证明题》,欢迎阅读!
必修,证明,数学,第二章,经典
----

1、如图,在三棱锥 P-ABC 中, EFD 分别是侧棱 PBPCPA 的中点。 求证:平面 EFD∥平面 ABC



1 1 1 1 EF 分别是棱 BC C1

4、已知 ABCD 是矩形, PA⊥平面 ABCD ,△PAD 是等腰三角形, PA=AD

1 的中

D

分别是 的中点,求证: ⊥平面 M N AB PC MN PCD





ABCD-A B C D 2、如图,在正方体

点,O AC BD 的交点, 求证: EF∥平面 BDD 1B1 5、在正方体 ABCD-A 1B1C1D1中,求证:平面 AB 1D1⊥平面 AA 1 C1C

3、正方体的棱长为 a C D 分别为两条棱的中点,求证:四边形ABCD

是梯形

6、如图,AB 为圆 O 的直径, C 为圆 O 上一点, PA⊥平面 ABC 垂足为 EAF PC,垂足为 F,求证: PB⊥平面 AEF

----

AE PB 1


----

7、如图,在矩形 ABCD 中, AB= 3 3 BC=3,沿对角线 BD 把△ BCD 起,使 C 移到 P,且 P 在面 ABD 内的射影 O 恰好落在 AB 上。求证: AD BP

8、如图,四棱锥 V-ABCD 中,底面 ABCD 是边长为 2 的正方形,其他四 个侧面都是侧棱长为5 的等腰三角形,试求出二面角 V-AB-C 的平面角的 度数

2

----


本文来源:https://www.wddqxz.cn/047de2b7d2f34693daef5ef7ba0d4a7302766ce1.html

相关推荐