【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《(完整版)双曲线抛物线参数方程》,欢迎阅读!
第三课时 圆锥曲线的参数方程
一、教学目标:了解圆锥曲线的参数方程及参数的意义 二、重难点:教学重点:圆锥曲线参数方程的定义及方法
教学难点:选择适当的参数写出曲线的参数方程.
三、教学方法:启发、诱导发现教学. 四、教学过程: (一)、复习引入:
1.写出圆方程的标准式和对应的参数方程。
2.写出椭圆、双曲线和抛物线的标准方程。 (二)、讲解新课:
x2y2
1.双曲线的参数方程的推导:双曲线221参数方程_____________________
ab
(为参数)
参数几何意义为以a为半径所作圆上一点和椭圆中心的连线与X轴正半轴的夹角。 2.抛物线的参数方程:抛物线y22Px参数方程________________________(t为参数) ,t为以抛物线上一点(X,Y)与其顶点连线斜率的倒数。 (1)、关于参数几点说明:
A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。 B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围
(三)、巩固训练
xt11、曲线t(t为参数)
的普通方程为
yt
1
t 2.双曲线{
x23tany6sec
(为参数) 的两焦点坐标是 。
3.、直线xtcos(为参数)ytsin与圆x42cos(为参数)
y2sin相切,那么直线的倾斜角为( A.5326或6 B.4或4 C.3或3 D.56或6
4、求直线x1ty1t
(t为参数)与圆x2y24的交点坐标。
)
本文来源:https://www.wddqxz.cn/f2d41606f5ec4afe04a1b0717fd5360cba1a8d0a.html