【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《求导数练习题》,欢迎阅读!
.
1、 求下列函数的导数
(1)y3x2, 则y_______________ 6x
2
x24x11x2
(2)y, 则y_______________ 222
(xx1)1xx
(3)yxnx, 则y_______________ n(x(4)y
n
n1
1)
xm21m11
2x2 ,则y_______________ mxmxxxxx
3
x2
(5)yxlog3x ,则y_______________ 3xlog3x
ln3
2
(6)yecosx ,则y_______________ e(cosxsinx)
5432
(7)y(x1)(3x1)(1x) ,则y_________18x5x12x12x2x3
2
3
xx
xsec2xtanxtanx
(8)y ,则y_______________
x2x
(9)y
1cosxxsinxx
,则y_______________ 2
(1cosx)1cosx
(10)y
21lnx
,则y_______________
x(1lnx)21lnx
2x(sinxcosx)(x21)(cosxsinx)1x2
(11)y ,则y___________
(sinxcosx)2sinxcosx
2、求下列复合函数的导数
(1)yx1x ,则y_______________
2
12x21x
2
2
2
23
(2)y(x1) ,则y_______________ 6x(x1)
'.
.
(1x2)2(12xx2)1x23
) ,则y_______________ 3(3)y(
(1x)41x
(4)yln(lnx) ,则y_______________
1 xlnx
(5)yln(sinx) ,则y_______________ cotx (6)ylg(xx1) ,则y_______________
2
2x11
x2x1ln10
11x
2
(7)yln(x1x2) ,则y_______________
(8)yln
11x1x
,则y_______________
2
1x1xx1x
3
(9)y(sinxcosx) ,则y_______________ 3cos2x(sinxcosx) (10)ycos4x ,则y_______________ 6cos4xsin8x (11)ysin1x2 ,则y_______________
3
x1x2
cos1x2
222
(12)y(sinx) ,则y_______________ 6xsinxcosx
23
(13)ye
x1
,则y_______________ e
x1
sinx
(14)y2(15) e
x
sinx
,则y_______________ ln22cosx
sin2x,则y_______________ ex(2cos2xsin2x)
'.
本文来源:https://www.wddqxz.cn/e641d48b68eae009581b6bd97f1922791788be4b.html