直角三角形三边关系

2023-02-01 01:09:30   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《直角三角形三边关系》,欢迎阅读!
三边,直角三角形,关系
直角三角形三边关系

一、教材分析

直角三角形三边关系是华师大版八年级上册第十四章

第一节内容。直角三角形三边关系是安排在学生学习了三角形、全等三角形、等腰三角形等有关知识之后,它揭示了直角三角形三边之间的一种美妙关系,将数与形密切联系起来,在几何学中占有非常重要的位置。同时勾股定理在生产、生活中也有很大的用途。

二、教学目标

综上分析及教学大纲要求,本课时教学目标制定如下: 1、知识目标

知道勾股定理的由来,初步理解割补拼接的面积证法。

掌握勾股定理,通过动手操作利用等积法理解勾股定理的证明过程。 2、能力目标

在探索勾股定理的过程中,让学生经历“观察——合理猜想——归纳——验证”的

数学思想,并体会数形结合以及由特殊到一般的思想方法,培养学生的观察力、抽象概括能力、创造想象能力以及科学探究问题的能力。 3、情感目标

通过观察、猜想、拼图、证明等操作,使学生深刻感受到数学知识的发生、发展过

程。

介绍“弦图”,让学生感受到中国古代在勾股定理研究方面所取得的伟大成就,激

发学生的数学激情及爱国情感。 三、教学重难点

本课重点是掌握勾股定理,让学生深刻感悟到直角三角形三边所具备的特殊关系。由于年级学生构造能力较低以及对面积证法的不熟悉,因此本课的难点便是勾股定理的证明。

四、学情分析

本节主要攻克的问题就是本节的难点:勾股定理的证明。我打算采用面积法来讲解,这种借助于图形的面积来探索、验证数学结论的数形结合思想,对于学生来说,有些陌生,难以理解,又加之数学课本身的课程特征,在讲解时,没有文科那么深动形象,所以针对这一现状,我在教法和学法上都进行了改进。

五、教法与学法分析

[教学方法与手段] 针对八年级学生的知识结构和心理特征,本节课选择引导探索法,由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,并利用多媒体进行教学。

[学法分析] 在教师组织引导下,采用自主探索、合作交流的方式,让学生自己实验,自己获取知识,并感悟学习方法,借此培养学生动手、动口、动脑能力,使学生真正成为学习的主体。让学生感受到自己是学习的主体,增强他们的主动感和责任感,这样对掌握新知会事半功倍。

六、教学流程设计 1、创设情境,引入新课

本节课开始利用多媒体介绍了在北京召开的2002年国际数学家大会的会标,其图案为

“赵爽弦图”,由此导入新课,是为了激发学生的兴趣和民族自豪感,它是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段迅速集中学生注意力,把他们的思绪带


进特定的学习情境中,激发学生浓厚的学习兴趣和强烈的求知欲。多媒体展示这一有意义的图案,可有效开启学生思维的闸门,激励探究,使学生的学习状态由被动变为主动,在轻松愉悦的氛围中学到知识。

2、观察发现,类比猜想















让学生仔细观察毕达哥拉斯朋友家的瓷砖(图1),从而得到特殊的

等腰直角三角形三边关系,紧接着由特殊到一般,让学生合理猜测:是否任意直角三角形都符合这个“三边关系”的结论?同学们很轻易的得到了结论。最后对此结论通过在网格中数格子进行验证,让学生经历了“观察——合理猜测——归纳——验证”的这一数学思想。在数格子的验证过程中,发现任意直角三角形(图2)斜边上长出的正方形中网格不规则,没法数出。通过同学们的讨论,发现数不出来的原因是格子不规则,从而想

到了用补或割的方法进行计算,其原则就是由不规则经过割补变为规则。

3、实验探究,证明结论

因为勾股定理的出现,使数学从单一的纯计算进入了几何图形的证明,所以为了让学生感受数形结合这一数学思想,让学生亲自动手,互相协作,拿一块由ab组成的不规则的平面图形经割补,变为规则的c又因两块割补前后面积相等,从而得到勾股定理:a+b= c,也因此引入了“等积法”证明勾股定理。

2

2

2

2

2

2




本文来源:https://www.wddqxz.cn/d6f2f928900ef12d2af90242a8956bec0875a516.html

相关推荐