运用气体定律解决变质量问题的几种方法

2023-03-18 17:09:23   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《运用气体定律解决变质量问题的几种方法》,欢迎阅读!
定律,气体,运用,质量,解决


运用气体定律解决变质量问题的几种方法

解变质量问题是气体定律教学中的一个难点,气体定律的适用条件是气体质量不变,所以在解决这一类问题中就要设法将变质量转化为定质量处理.常用的解题方法如下。

一、等效的方法

在充气、抽气的问题中可以假设把充进或抽出的气体包含在气体变化的始末状态中,即用等效法把变质量问题转化为恒定质量的问题。 1。充气中的变质量问题

设想将充进容器内的气体用一根无形的弹性口袋收集起来,那么当我们取容器和口袋内的全部气体为研究对象时,这些气体状态不管怎样变化,其质量总是不变的.这样,我们就将变质量的问题转化成质量一定的问题了.

1.一个篮球的容积是,用打气筒给篮球打气时,每次把Pa的空气打进去。如果在打气前篮球里的空气压强也是Pa那么打30次以后篮球内的空气压强是多少Pa(设在打气过程中气体温度不变)

解析: 由于每打一次气,总是把体积,相等质量、压强为的空气压到容积为的容器,所以打次气后,共打入压强为的气体的总体积为,因为打入的体积的气体与原先容器里空气的状态相同,故以这两部分气体的整体为研究对象.取打气前为初状态:压强为、体积;打气后容器中气体的状态为末状态:压强为、体积为.

令为篮球的体积,为次所充气体的体积及篮球的体积之和



由于整个过程中气体质量不变、温度不变,可用玻意耳定律求解。

2。抽气中的变质量问题

用打气筒对容器抽气的的过程中,对每一次抽气而言,气体质量发生变化,其解决方法同充气问题类似:假设把每次抽出的气体包含在气体变化的始末状态中,即用等效法把变质量问题转化为恒定质量的问题。

2.用容积为的活塞式抽气机对容积为的容器中的气体抽气,如图1所示。 设容器中原来气体压强为,抽气过程中气体温度不变.求抽气机的活塞抽动次后,容器中剩余气体的压强为多大?

解析:如图是活塞抽气机示意图,当活塞下压,阀门a关闭,b打开,抽气机气缸中ΔV体积的气体排出.活塞第二次上提(即抽第

二次气),容器中气体压强降为P2.根据玻意耳定律得

第一次抽气 第二次抽气

以此类推,第次抽气容器中气体压强降为

1 二、应用密度方程

一定质量的气体,若体积发生变化,气体的密度也随之变化,由于气体密度 ,故将气体体积代入状态方程并化简得:,这就是气体状态发生变化时的密度关系方程.

此方程是由质量不变的条件推导出来的,但也适用于同一种气体的变质量问题;当温度不变或压强不变时,由上式可以得到:和,这便是玻意耳定律的密度方程和盖·吕萨克定律的密度方程.

3.开口的玻璃瓶内装有空气,当温度自升高到时,瓶内恰好失去质量为的空气,求瓶内原有空气质量多少克?

解析:瓶子开口,瓶内外压强相等,大气压认为是不变的,所以瓶内的空气变化可认为是等压变化.设瓶内空气在时密度为,在时密度为,瓶内原来空气质量为,加热后失去空气




质量为,由于对同一气体来说,,故有



根据盖·吕萨克定律密度方程: 由①②式,可得: 三、巧选研究对象

两个相连的容器中的气体都发生了变化,对于每一个容器而言则属于变质量问题,但是如果能巧妙的选取研究对象,就可以把这类变质量问题转化为定质量问题处理.

4 如图2所示,、两容器容积相同,用细长直导管相连,二者均封入压强为,温度为的一定质量的理想气体,现使内气体温度升温至,稳定后容器的压强为多少?





解析:因为升温前后,、容器内的气体都发生了变化,是变质量问题,我们可以把变质

2

量问题转化为定质量问题。我们把升温前整个气体分为和两部分(如图3所示),以便升温,让气体充满A容器,气体压缩进容器,于是由气态方程或气体实验定律有:







3





联立上面连个方程解得:

四、虚拟中间过程

通过研究对象的选取和物理过程的虚拟,把变质量问题转化为定质量问题。 5。如图4所示的容器与由毛细管连接,,开始时,、都充有温度为,压强为的空气.使的温度保持不变,对加热,使内气体压强变为,毛细管不传热,且体积不计,求中的气体的温度。

解析:对中气体加热时,中气体体积、压强、温度都要发生变化,

将有一部分气体从中进入中,进入中的气体温度又变为,虽然中气体温度不



变,但由于质量发生变化,压强也随着变化(增大),这样、两容器中的气体质量都发生了变化,似乎无法用气态方程或实验定律来解,那么能否通

4

过巧妙的选取研究对象及一些中间参量,把变质量问题转化为定质量问题处理呢?

加热后平衡时两部分气体压强相等,均为,因此,可先以、中的气体作为研究对象(一定质量),假设保持温度不变,压强由增至,体积由()变为V;再以此状态时体积为()的气体为研究对象,压强保持不变,温度由升到,体积由()变为,应用气体定律就可以求出.

先以中气体为研究对象 初状态, 末状态,,

由波义耳定律




本文来源:https://www.wddqxz.cn/c848a177deccda38376baf1ffc4ffe473368fdd2.html

相关推荐