菱形的性质与判定教案

2023-02-20 06:04:31   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《菱形的性质与判定教案》,欢迎阅读!
菱形,判定,教案,性质
年级·数学·上册·总第课时·授课时间:年月日

教学课题:§1.1菱形的性质与判定2课型:新授课

教学目标:1进一步理解菱形的概念;掌握菱形的性质定理;

2经历菱形判定定理的探究过程;进一步发展合情推理能力..

3能够用综合法证明菱形的判定定理;进一步发展演绎推理能力..

教学重点:菱形判定定理的探究与证明;

教学难点:探究菱形的判定定理;并利用菱形的判定定理解决简单问题 教学过程:

教学流程

一、检

问题1:菱形的定义: 问题2:菱形的性质定理:

问题3:平行四边形的判定方法有哪些 二、学

问题4:有的平行四边形叫做菱形.. 问题5:有的四边形叫做菱形..

问题6:对角线的平行四边形叫做菱形.. 问题7:对角线的四边形叫做菱形.. 证明菱形的判定定理1 证明菱形的判定定理2 三、讲

1 如图;ABCD;对角线ACBD相交于点O;AB=5;OA=4;OB=3; 求证:ABCD是菱形

2、如图;四边形纸片ABCD;ADCB;ADCD;将纸片沿过点D的直线折叠;使点C落在AD上的点C′处;折痕DEBC于点E;连接CE.你能确定四边形CDCE的形状吗 四、测 一练习检测

1、有的平行四边形是菱形; 2、的四边形是菱形;

3、对角线的平行四边形是菱形; 4、对角线的四边形是菱形; 5、见课本第7的随堂练习 二归纳总结

二次备课




1在平行四边形的基础上再添加一个什么条件可使这个平行四边形是菱形 2在四边形的基础上再添加什么条件可使这个四边形是菱形 三课后作业

必做题:习题1.212、题

选择题:在△ABC;DEF分别是三边的中点..求证:四边形AFDE是菱形..




本文来源:https://www.wddqxz.cn/bcf70c55f28583d049649b6648d7c1c709a10b54.html

相关推荐