【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《高考数学讲义随机变量及其分布列.版块三.离散型随机变量的期望与方差2.教师版》,欢迎阅读!
数学期望
知识内容
1. 离散型随机变量及其分布列
⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化的,我们把这样的变量X叫做一个随机变量.随机变量常用大写字母X,Y,L表示.
如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量. ⑵离散型随机变量的分布列
将离散型随机变量X所有可能的取值xi与该取值对应的概率pi(i1,2,L,n)列表表示:
X P
x1 p1
x2 p2
… …
xi pi
… …
xn pn
我们称这个表为离散型随机变量X的概率分布,或称为离散型随机变量X的分布列.
2.几类典型的随机分布
⑴两点分布
如果随机变量X的分布列为
X 1 0 P p q
其中0p1,q1p,则称离散型随机变量X服从参数为p的二点分布.
二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X为任意抽取一件产品得到的结果,则X的分布列满足二点分布.
X 1
0
P 0.8 0.2
两点分布又称01分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布.
⑵超几何分布 一般地,设有总数为N件的两类物品,其中一类有M件,从所有物品中任取n件(n≤N),这n件中所含这类物品件数X是一个离散型随机变量,它取值为m时的概率为
nm
CmMCNM
P(Xm)(0≤m≤l,l为n和M中较小的一个).
CnN
我们称离散型随机变量X的这种形式的概率分布为超几何分布,也称X服从参数为N,
M,n的超几何分布.在超几何分布中,只要知道N,M和n,就可以根据公式求出X
1
取不同值时的概率P(Xm),从而列出X的分布列.
⑶二项分布
1.独立重复试验
如果每次试验,只考虑有两个可能的结果A及A,并且事件A发生的概率相同.在相同的条件下,重复地做n次试验,各次试验的结果相互独立,那么一般就称它们为n次独立重复试验.n次独立重复试验中,事件A恰好发生k次的概率为
knk
Pn(k)Ck(k0,1,2,L,n). np(1p)2.二项分布
若将事件A发生的次数设为X,事件A不发生的概率为q1p,那么在n次独立重复
knk
试验中,事件A恰好发生k次的概率是P(Xk)Ck,其中k0,1,2,L,n.于npq是得到X的分布列
X P
0
0n
C0npq
1
1n1
C1 npq
… … 二
行
k
knk
Ck npq
… … 二
n
n0
Cnnpq
由于表中的第恰好是项展开式
0n11n1knkn0
(qp)nC0LCkLCnnpqCnpqnpqnpq
各对应项的值,所以称这样的散型随机变量X服从参数为n,p的二项分布, 记作X~B(n,p).
二项分布的均值与方差:
若离散型随机变量X服从参数为n和p的二项分布,则
E(X)np,D(x)npq(q1p).
⑷正态分布
1. 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,
直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X,则这条曲线称为X的概率密度曲线.
曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X落在指定的两个数a,b之间的概率就是对应的曲边梯形的面积. 2.正态分布
⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的y随机现象的随机变量的概率分布近似服从正态分布. x=μ服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为f(x)
1
2π
xR,其中,是参数,且0,.
e
(x)222
,
式中的参数和分别为正态变量的数学期望和标准差.期望
O
x
为、标准差为的正态分布通常记作N(,2). 正态变量的概率密度函数的图象叫做正态曲线.
⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑶重要结论:
①正态变量在区间(,),(2,2),(3,3)内,取值的概率分别是68.3%,95.4%,99.7%.
②正态变量在(,在区间(3,3)之外的取值的概率)内的取值的概率为1,
2
是0.3%,故正态变量的取值几乎都在距x三倍标准差之内,这就是正态分布的3原则.
2),f(x)为其概率密度函数,⑷若~N(,则称F(x)P(≤x)f(t)dt为概率分布
x1t22函数,特别的,edt为标准正态分布函数. ~N(0,1),称(x)2π
x
P(x)().
标准正态分布的值可以通过标准正态分布表查得.
分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.
2
x
3.离散型随机变量的期望与方差
1.离散型随机变量的数学期望
定义:一般地,设一个离散型随机变量X所有可能的取的值是x1,x2,…,xn,这些值对应的概率是p1,p2,…,pn,则E(x)x1p1x2p2Lxnpn,叫做这个离散型随机变量X的均值或数学期望(简称期望).
离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平. 2.离散型随机变量的方差
一般地,设一个离散型随机变量X所有可能取的值是x1,x2,…,xn,这些值对应的概率是p1,p2,…,pn,则D(X)(x1E(x))2p1(x2E(x))2p2L(xnE(x))2pn叫做这个离散型随机变量X的方差.
离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度).
D(X)的算术平方根D(x)叫做离散型随机变量X的标准差,它也是一个衡量离散型随机变量波动大小的量.
D(aXb)a2D(X); 3.X为随机变量,a,b为常数,则E(aXb)aE(X)b,
4. 典型分布的期望与方差:
⑴二点分布:在一次二点分布试验中,离散型随机变量X的期望取值为p,在n次二点分布试验中,离散型随机变量X的期望取值为np.
⑵二项分布:若离散型随机变量X服从参数为n和p的二项分布,则E(X)np,D(x)npq(q1p).
⑶超几何分布:若离散型随机变量X服从参数为N,M,n的超几何分布,
n(Nn)(NM)MnM
则E(X),D(X).
N2(N1)N
4.事件的独立性
如果事件A是否发生对事件B发生的概率没有影响,即P(B|A)P(B),
这时,我们称两个事件A,B相互独立,并把这两个事件叫做相互独立事件.
如果事件A1,A2,…,An相互独立,那么这n个事件都发生的概率,等于每个事件发生的概率的积,即P(A1IA2ILIAn)P(A1)P(A2)LP(An),并且上式中任意多个事件Ai换成其对立事件后等式仍成立.
5.条件概率
对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概
3
率,用符号“P(B|A)”来表示.把由事件A与B的交(或积),记做DAIB(或DAB).
典例分析
【例1】 某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每
粒需再补种2粒,补种的种子数记为X,则X的数学期望为( ) A.100 B.200 C.300 D.400
【考点】离散型随机变量的期望与方差 【难度】1星 【题型】选择
【关键词】2010年,全国高考
【解析】不妨设不发芽种子数Y,于是X2Y.EY100010.9100.
于是EX2EY200.
【答案】B;
【例2】 某射手射击所得环数的分布列如下:
P
7 x
8 9 10
0.1 0.3
y
已知的期望E8.9,则y的值为 .
【考点】离散型随机变量的期望与方差 【难度】1星 【题型】填空
【关键词】2010年,湖北高考 【解析】由数学期望的计算公式,
有E7x80.190.310y8.97x10y5.4 又由x0.10.3y1xy0.6.解得y0.4.
【答案】0.4;
4
【例3】 随机变量的概率分布率由下图给出:
x
7 0.3
8 0.35
9 0.2
10 0.15
Px
则随机变量的均值是__________;
【考点】离散型随机变量的期望与方差 【难度】1星 【题型】填空
【关键词】2010年,上海高考 【解析】由数学期望的计算公式,
有ExPx70.380.3590.2100.158.2.
【答案】8.2;
【例4】 甲、乙两人各进行3次射击,甲每次击中目标的概率为
为
1
,乙每次击中目标的概率2
2
,求: 3
⑴ 记甲击中目标的次数为,的概率分布及数学期望; ⑵ 乙至多击中目标2次的概率;
⑶ 甲恰好比乙多击中目标2次的概率.
【考点】离散型随机变量的期望与方差 【难度】3星 【题型】解答 【关键词】无 【解析】略
133013113213
【答案】⑴ P;;;(0)C()P(1)C()P(2)C()333
282828
1313
. P(3)C()3
28
的概率分布如下表
0
1 2 3
5
133 888
1331
E01231.5.
8888
3
1932⑵ 乙至多击中目标2次的概率为1C3. 327
P
1
8
⑶ 设甲恰好比乙多击中目标2次为事件A,甲恰击中2次且乙恰击中目标0次为事件B1,甲恰击中目标3次且乙恰击中目标1次为事件为B2, 则AB1B2,
31121
.所以甲恰好比B1、B2为互斥事件.P(A)P(B1)P(B2)
8278924
1
乙多击中目标2次的概率为.
24
【例5】 一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:
f1xx,f2xx2,f3xx3,f4xsinx,f5xcosx,f6x2.
现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
【考点】离散型随机变量的期望与方差 【难度】3星 【题型】解答
【关键词】2010年,广东五校高三联考 【解析】略
【答案】可取1,2,3,4.
111
C3C3C331
P(1)1,P(2)11
C6C510C62
1111111
C3C3C2C11C3C3C23
,P(4)1111; P(3)111
C6C5C4C320C6C5C420
故的分布列为
P
1 2 3 4
1
23 103 201 20
13317
由数学期望的计算公式可知E1234.
21020204
【例6】 设S是不等式x2x6≤0的解集,整数m,nS.
n”为事件A,⑴ 记使得“mn0成立的有序数组m,试列举A包含的基本事件;
6
⑵ 设m2,求的分布列及其数学期望E.
【考点】离散型随机变量的期望与方差 【难度】4星 【题型】解答
【关键词】2010年,福建高考 【解析】略
【答案】⑴ 由x2x6≤0得2≤x≤3,即Sx|2≤x≤3.
由于m,nZ,m,nS且mn0,
1,1,1,0,0. 所以A包含的基本事件为:2,2,2,2,1,
⑵ 由于m的所有不同取值为2,1,0,1,2,3,所以m2的所有不同取值为0,1,4,9,且有P0
P9
1
. 6
12121,P1,P4,66363
故的分布列为
0 1 11
P
36
111119
所以E0149.
63366
4
1 39 1 6
【例7】 某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统
会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令表示走出迷宫所需
的时间.
⑴ 求的分布列; ⑵ 求的数学期望.
【考点】离散型随机变量的期望与方差 【难度】4星 【题型】解答
7
【关键词】2010年,江西高考 【解析】略
【答案】⑴的所有可能取值为1,3,4,6
P1
P
1111
,P3,P4,P6,所以的分布列为: 36631
3
4
6
1 31 61 61 3
11117
⑵ E1346(小时)
36632
【例8】 投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,
则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3,各专家独立评审.
⑴求投到该杂志的1篇稿件被录用的概率;
⑵记X表示投到该杂志的4篇稿件中被录用的篇数,求X的分布列及期望.
【考点】离散型随机变量的期望与方差 【难度】4星 【题型】解答
【关键词】2010年,全国高考 【解析】略
【答案】⑴记A表示事件:稿件能通过两位初审专家的评审;
B表示事件:稿件恰能通过一位初审专家的评审; C表示事件:稿件能通过复审专家的评审;
D表示事件:稿件被录用.
则DABC
P(A)0.50.50.25,P(B)20.50.50.5,P(C)0.3 P(D)P(ABC)P(A)P(BC)P(A)P(B)P(C)
0.250.50.30.40
⑵X~B(4,0.4),其分布列为:
8
P(X0)(10.4)40.1296,
3
P(X1)C140.4(10.4)0.3456, 22P(X2)C240.4(10.4)0.3456, 3P(X3)C340.4(10.4)0.1536,
P(X4)0.440.0256.
期望EX40.41.6
【例9】 如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,
T2,T3的概率都是p,电流能通过T4的概率是0.9.电流能否通过各元件相互独
立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999. ⑴求p;
⑵求电流能在M与N之间通过的概率;
⑶表示T1,T2,T3,T4中能通过电流的元件个数,求的期望.
T1
M
T2
T4
T3
N
【考点】离散型随机变量的期望与方差 【难度】3星 【题型】解答
【关键词】2010年,全国高考 【解析】略
【答案】记A1表示事件,电流能通过T1,I1,2,3,4.
A表示事件:T1,T2,T3中至少有一个能通过电流, B表示事件:电流能在M与N之间通过.
⑴AA1A2A3,A1,A2,A3相互独立,
又PA1PA10.9990.001.
故(1p)30.001,p0.9.
PAPA1A2A3PA1PA2PA31p
3
⑶由于电流能通过各元件的概率都是0.9,且电流能否通过各元件相互独立.
9
故~B(4,0,9)
E40.93.06.
【例10】 某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为
4
,5
第二、第三门课程取得优秀成绩的概率分别为p,q(pq),且不同课程是否取得优秀成绩相互独立.记为该生取得优秀成绩的课程数,其分布列为
p
0 1 a
2 3
6
125
d
24 125
⑴求该生至少有1门课程取得优秀成绩的概率; ⑵求p,q的值; ⑶求数学期望E.
【考点】离散型随机变量的期望与方差 【难度】4星 【题型】解答
【关键词】2010年,北京高考 【解析】略
【答案】事件Ai表示“该生第i门课程取得优秀成绩”,i1,2,3,
4
由题意知P(A1),P(A2)p,P(A3)q
5
⑴由于事件“该生至少有1门课程取得优秀成绩”与事件“0”是对立的,所以该生至少有1门课程取得优秀成绩的概率是
1P(0)1
6119
125125
⑵由题意知
16
P(0)P(A1A2A3)(1p)(1q)
5125424
P(3)P(A1A2A3)pq
5125
6
整理得pq,pq1.
25
32
由pq,可得p,q
55
10
⑶由题意知
aP(1)P(A1A2A3)P(A1A2A3)P(A1A2A3)
41137
(1p)(1q)p(1q)(1p)q
555125bP(2)1P(0)P(1)P(3)
58
125
9 5
E0P(0)1P(1)2P(2)3P(3)
【例11】 某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶
1
盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购
6
买了一瓶该饮料.
⑴求甲中奖且乙、丙都没有中奖的概率; ⑵求中奖人数的分布列及数学期望E.
【考点】离散型随机变量的期望与方差 【难度】4星 【题型】解答
【关键词】2010年,四川高考 【解析】略
【答案】⑴显然甲、乙、丙三位同学是否中奖独立,
15525
所以甲中奖且乙、丙都没有中奖的概率是:
666216
⑵
0 1 2
3
1
216
75125
216216
125751511
E0123
2162162162162
P
15
216
【例12】 某射手每次射击击中目标的概率是
2
,且各次射击的结果互不影响. 3
⑴假设这名射手射击5次,求恰有2次击中目标的概率
⑵假设这名射手射击5次,求有3次连续击中目标.另外2次未击中目标的概率; ⑶假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记为射手射击3次后的总的分数,求的分布列.
11
【考点】离散型随机变量的期望与方差 【难度】4星 【题型】解答
【关键词】2010年,天津高考 【解析】略
【答案】⑴设X为射手在5次射击中击中目标的次数,则X~B5,.
3
2
在5次射击中,恰有2次击中目标的概率
40222
P(X2)C51
33243
2
2
⑵设“第i次射击击中目标”为事件Ai(i1,2,3,4,5);“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A,则
P(A)P(A1A2A3A4A5)P(A1A2A3A4A5)P(A1A2A3A4A5)
3
2
3
2
3
82112112
813333333
⑶由题意可知,的所有可能取值为0,1,2,3,6
11
P(0)P(A1A2A3)
327P(1)P(A1A2A3)P(A1A2A3)P(A1A2A3)
2
2
3
21121122
33333339
2124
P(2)P(A1A2A3)
33327
82111
P(3)P(A1A2A3)P(A1A2A3)
33332782
P(6)P(A1A2A3)
327
3
2
2
所以的分布列是
P
0 1 271 2 92 4 273 8 276 8 27
【例13】 如图,一个小球从M处投入,通过管道自上面下落到A或B或C,已知小球从每
个叉口落入左右两个管道的可能性是相等的.
某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为1,2,3等奖.
12
⑴已知获得1,2,3等奖的折扣率分别为50%,70%,90%,记随机变量为获得k(k1,2,3)等奖的折扣率,求随机变量的分布列及数学期望E.
⑵若有3人次(投入1球为1人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求P(2).
M
【考点】离散型随机变量的期望与方差 【难度】4星 【题型】解答
【关键词】2010年,浙江高考 【解析】略
【答案】⑴由题意得的分布列为
BAC
(第19题图)
P
50%
3 16
337350%70%90%. 168164
70%
3
8
90%
7 16
则E
⑵由⑴知,获得1等奖或2等奖的概率为
9
则P(2)C
16
21
2
9339
.由题意得~B3, 1681616
91701
. 1
164096
【例14】 在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排
在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……,6),求:
⑴甲、乙两单位的演出序号至少有一个为奇数的概率; ⑵甲、乙两单位之间的演出单位个数的分布列与期望.
【考点】离散型随机变量的期望与方差 【难度】3星 【题型】解答
13
【关键词】2010年,重庆高考 【解析】略
【答案】⑴设A表示“甲、乙的演出序号至少有一个奇数均”,
则A表示“甲、乙的演出序号均为偶数”,由等可能性事件的概率计算公式得
2C314
P(A)1PA121.
C655
⑵的所有可能值为0,1,2,3,4,且
P0P3
514431,P12,P22, 2
C63C615C652211
, P422
C615C615
从而知有分布列
0 3 1 2
1142 P
351515141214
所以,E01234.
315515153
4
1 15
【例15】 某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转
动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和. ⑴若某位顾客消费128元,求返券金额不低于30元的概率;
⑵若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).求随机变量X的分布列和数学期望.
【考点】离散型随机变量的期望与方差 【难度】3星 【题型】解答
【关键词】2010年,北京海淀1模 【解析】略
14
【答案】设指针落在A、B、C区域分别记为事件A、B、C.
111
则P(A),P(B),P(C).
362
⑴ 若返券金额不低于30元,则指针落在A或B区域.
111
∵PP(A)P(B)
632
1
即消费128元的顾客,返券金额不低于30元的概率是.
2
⑵ 由题意得,该顾客可转动转盘2次.
随机变量X的可能值为0,30,60,90,120.
111
P(X0);
224111
P(X30)2;
23311115
P(X60)2;
263318111
P(X90)2;
369111
; P(X120)
6636
所以,随机变量X的分布列为:
0 30 60 90 120 P
11511 X
4183936
11511
其数学期望EX030609012040.
4318936
【例16】 如图,两个圆形转盘A,B,每个转盘阴影部分各占转盘面积的
11
和.某“幸运转24
盘积分活动”规定,当指针指到A,B转盘阴影部分时,分别赢得积分1000分和2000
分.先转哪个转盘由参与者选择,若第一次赢得积分,可继续转另一个转盘,此时活动结束;若第一次未赢得积分,则终止活动.
⑴记先转A转盘最终所得积分为随机变量X,则X的取值分别是多少? ⑵如果你参加此活动,为了赢得更多的积分,你将选择先转哪个转盘?请说明理由.
【考点】离散型随机变量的期望与方差 【难度】3星
15
【题型】解答
【关键词】2010年,北京石景山一模 【解析】略
【答案】⑴X的取值分别是:0分,1000分,3000分.
11
⑵由已知得,转动A盘得到积分的概率为,转动B盘得到积分的概率为.
24
设先转A盘所得的积分为X分,先转B盘所得的积分为Y分.则有
11113111
P(X0)1,P(X1000)(1),P(X3000).
222482481316000
∴EX010003000.
2888
311
同理:P(Y0),P(Y2000),P(Y3000).
4883115000
∴EY020003000.
4888
故先转A盘时,赢得积分平均水平较高.
0.03(8070)6018.
【例17】 在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确
回答者进入下一轮考核,否则被淘汰,已知某选手能正确回答第一、二、三、四
5431
轮问题的概率分别为、、、,且各轮问题能否正确回答互不影响.
6543
⑴求该选手进入第三轮才被淘汰的概率;⑵求该选手至多进入第三轮考核的概率;
⑶该选手在选拔过程中回答过的问题的个数记为X,求随机变量X的分布列和期望.
【考点】离散型随机变量的期望与方差 【难度】3星 【题型】解答
【关键词】2010年,北京西城1模 【解析】略
【答案】设事件Ai(i1,2,3,4)表示“该选手能正确回答第i轮问题”,
5431
由已知P(A1),P(A2),P(A3),P(A4),
6543
⑴设事件B表示“该选手进入第三轮被淘汰”,
16
5431
则P(B)P(A1A2A3)P(A1)P(A2)P(A3)1.
6546
⑵设事件C表示“该选手至多进入第三轮考核”, 则P(C)P(A1A1A2A1A2A3)
1515431(1); 6656542
⑶X的可能取值为1,2,3,4,
1
P(X1)P(A1),
6541
P(X2)P(A1A2)(1),
6565431
P(X3)P(A1A2A3)(1),
65465431
P(X4)P(A1A2A3),
6542
所以,X的分布列为
1 2 3 4 X
1111 P
6662
1111
E(X)12343.
6662P(A1)P(A1A2)P(A1A2A3)
【例18】 在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投
篮命中,则由他继续投篮,否则由对方接替投篮.现由甲、乙两人进行一对一投篮
11
比赛,甲和乙每次投篮命中的概率分别是,.两人投篮3次,且第一次由甲开
32
始投篮,假设每人每次投篮命中与否均互不影响. ⑴求3次投篮的人依次是甲、甲、乙的概率;
⑵若投篮命中一次得1分,否则得0分,用表示甲的总得分,求的分布列和数
学期望.
【考点】离散型随机变量的期望与方差 【难度】3星 【题型】解答
【关键词】2010年,北京朝阳1模 【解析】略
【答案】⑴记“3次投篮的人依次是甲、甲、乙”为事件A.
122
由题意,得P(A)
339
2
答:3次投篮的人依次是甲、甲、乙的概率是.
9
17
⑵由题意的可能有取值为0,1,2,3,则
212125211121
P(0),P(1).
32323932333311221111
,P(3). P(2)
3332733327
所以的分布列为
0 1 2
51
93512116
的数学期望E0123.
93272727
P
2
27
3 1 27
【例19】 某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师
2
父加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为
3
1. 9
⑴求徒弟加工2个零件都是精品的概率;
⑵求徒弟加工该零件的精品数多于师父的概率;
⑶设师徒二人加工出的4个零件中精品个数为,求的分布列与均值E.
【考点】离散型随机变量的期望与方差 【难度】4星 【题型】解答
【关键词】2010年,北京丰台1模 【解析】略
2211
【答案】⑴设徒弟加工1个零件是精品的概率为p1,则p12,得p12,
33941
所以徒弟加工2个零件都是精品的概率是
4
⑵设徒弟加工零件的精品数多于师父的概率为p,
1
由⑴知,p1,师父加工两个零件中,精品个数的分布列如下:
2
1 2 0
144 P
999
徒弟加工两个零件中,精品个数的分布列如下:
0 1 2
121 P
444
1241117
所以p2
94949436
18
⑶的分布列为
0 1
2 3 4
1613124 P
3636363636
16131247
的期望为01234.
36363636363
【例20】 某公司要将一批海鲜用汽车运往A城,如果能按约定日期送到,则公司可获得销
售收入30万元,每提前一天送到,或多获得1万元,每迟到一天送到,将少获得1万元,为保证海鲜新鲜,汽车只能在约定日期的前两天出发,且行驶路线只能选择公路1或公路2中的一条,运费由公司承担,其他信息如表所示.
统计信息 ⑴不堵车的情况 堵车的情况下 运费(万
下到达所需时到达所需时间堵车的概率 记汽车行驶 元)
间(天) (天) 汽路线
车1
2 3 公路1 1.6
走10
1公 0.8 公路2 1 4
2路
1时公司获得的毛利润为(万元),求的分布列和数学期望E;
⑵假设你是公司的决策者,你选择哪条公路运送海鲜有可能获得的毛利润更多?
(注:毛利润销售收入运费)
【考点】离散型随机变量的期望与方差 【难度】4星 【题型】解答
【关键词】2010年,北京宣武1模 【解析】略
【答案】⑴汽车走公路1时不堵车时获得的毛利润301.628.4万元
堵车时公司获得的毛利润301.6127.4万元 ∴汽车走公路1时获得的毛利润的分布列为
28.4
9 P
10
91
∴E28.427.428.3万元
1010
⑵设汽车走公路2时获得的毛利润为万元 不堵车时获得的毛利润300.8130.2万元
27.4 1 10
19
堵车时的毛利润300.8227.2万元 ∴汽车走公路2时获得的毛利润的分布列为
30.2
P
11
∴E30.227.228.7万元
22
∴EE
1 2
27.2 1 2
∴选择公路2可能获利更多.
【例21】 袋中装有标有数字1,2,3,4的小球各3个,从袋中任取3个小球,每个小球被取出
的可能性都相等.
⑴求取出的3个小球上的数字互不相同的概率;
⑵用X表示取出的3个小球上所标的最大数字,求随机变量X的分布列和均值.
【考点】离散型随机变量的期望与方差 【难度】3星 【题型】解答
【关键词】2010年,北京东城2模 【解析】略
【答案】⑴“一次取出的3个小球上的数字互不相同”的事件记为A,
111
C3274C3C3C3
则P(A) 3
C1255
⑵由题意,X所有可能的取值为:1,2,3,4. 11
; P(X1)3
C12220
2213C3C1193C3C3C3
P(X2); 3
C12220
2123
C6C164163C6C3C3
P(X3); 3
C12220552123
C9C1136343C9C3C3
P(X4). 3
C1222055
所以随机变量X的分布列为
X P
随机变量X的均值为
1 2 3 4
1
22019
22016 5534 35
20
EX1
1191634155
. 234
220220555544
【例22】 袋子里有大小相同的3个红球和4个黑球,今从袋子里随机取球.
⑴若有放回地取3次,每次取1个球,求取出1个红球2个黑球的概率; ⑵若无放回地取3次,每次取1个球.
①求在前2次都取出红球的条件下,第3次取出黑球的概率; ②求取出的红球数X的分布列和均值(即数学期望).
【考点】离散型随机变量的期望与方差 【难度】4星 【题型】解答
【关键词】2010年,北京朝阳2模 【解析】略
【答案】⑴记“取出1个红球2个黑球”为事件A,根据题意有
34144P(A)C;
77343
13
2
144
. 343
⑵①方法一:记“在前2次都取出红球”为事件B,“第3次取出黑球”为事件C,则
4
PBC3543213244
,所以PCB. P(B),PBC
1PB5767765357
nBC3244
. 方法二:PCB
nB3255答:取出1个红球2个黑球的概率是
答:在前2次都取出红球的条件下,第3次取出黑球的概率是②随机变量X的所有取值为0,1,2,3.
313
C3C24184A34C3A3
P(X0),P(X1), 33
A735A735233C1C31214C3A33A3
P(X2)P(X3),. 3
A335A3577
4
. 5
所以EX0
21
X 0 1 2 3
P
4 3518 3512 351 35
418121459123. 35353535357
【例23】 一个盒子中装有5张卡片,每张卡片上写有一个数字,数字分别是1、2、3、4、
5,现从盒子中随机抽取卡片.
⑴ 若从盒子中有放回的取3次卡片,每次抽取一张,求恰有两次取到的卡片上数字为偶数的概率;
⑵ 若从盒子中依次抽取卡片,每次抽取一张,取出的卡片不放回,当取到一张记有偶数的卡片即停止抽取,否则继续抽取卡片,求抽取次数X的分布列和期望.
【考点】离散型随机变量的期望与方差 【难度】4星 【题型】解答
【关键词】2010年,北京西城2模 【解析】略
【答案】⑴ 设A表示事件“有放回地抽取3次卡片,每次抽取一张,
恰有两次取到的卡片上数字为偶数”,
由已知,每次取到的卡片上数字为偶数的概率为2336
则P(A)C.
55125
23
2
2, 5
⑵ 依题意,X的可能取值为1,2,3,4.
2323
P(X1), P(X2),
5541032213211
P(X3),P(X4),
543554310
所以X的分布列为 X 1 2 3 4
2311 P
510510
2311
E(X)12342.
510510
【例24】 某学校高一年级开设了A,B,C,D,E五门选修课.为了培养学生的兴趣爱好,要求
每个学生必须参加且只能选修一门课程.假设某班甲、乙、丙三名学生对这五门课
程的选择是等可能的.
⑴求甲、乙、丙三名学生参加五门选修课的所有选法种数;
⑵求甲、乙、丙三名学生中至少有两名学生选修同一门课程的概率;
⑶设随机变量X为甲、乙、丙这三名学生参加A课程的人数,求X的分布列与数学期望.
【考点】离散型随机变量的期望与方差
22
【难度】4星 【题型】解答
【关键词】2010年,北京崇文2模 【解析】略
【答案】⑴甲、乙、丙三名学生每人选择五门选修课的方法数是5种,
故共有555125(种).
3
A512
⑵三名学生选择三门不同选修课程的概率为:3.
525
1213
∴三名学生中至少有两人选修同一门课程的概率为:1.
2525
⑶由题意:X0,1,2,3.
2
C148436434; P(X1); P(X0)3351255125
23C412C1
; P(X3)33. P(X2)33
51255125
的分布列为
X P
0 64 1251 48 1252 12 1253 1 125
数学期望EX0
64481213123. 1251251251255
【例25】 在某次抽奖活动中,一个口袋里装有5个白球和5个黑球,所有球除颜色外无任何
不同,每次从中摸出2个球,观察颜色后放回,若为同色,则中奖. ⑴ 求仅一次摸球中奖的概率;
⑵ 求连续2次摸球,恰有一次不中奖的概率;
⑶ 记连续3次摸球中奖的次数为,求的分布列.
【考点】离散型随机变量的期望与方差 【难度】4星 【题型】解答
【关键词】2010年,北京崇文2模 【解析】略
23
22C54
【答案】⑴ 设仅一次摸球中奖的概率为P 11,则P2
C109
⑵ 设连续2次摸球(每次摸后放回),恰有一次不中奖的概率为P2,则
40 P2C121P1P181
⑶ 的取值可以是0,1,2,3
1253
, P01P1
729
3001002
, P1C131P1P1
729243240802
, P2C31P1P12
729243
643
所以的分布列如下表 P3P1729
0 1 2 3
1251008064
P
729243243729
【例26】 为保护水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园
进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立.
⑴求4人恰好选择了同一家公园的概率;
⑵设选择甲公园的志愿者的人数为X,试求X的分布列及期望. 【考点】离散型随机变量的期望与方差 【难度】4星 【题型】解答
【关键词】2010年,北京海淀2模 【解析】略
【答案】⑴设“4人恰好选择了同一家公园”为事件A.
每名志愿者都有3种选择,4名志愿者的选择共有34种等可能的情况. 事件A所包含的等可能事件的个数为3,
31
所以,PA4.
327
1
即:4人恰好选择了同一家公园的概率为.
27
1
⑵设“一名志愿者选择甲公园”为事件C,则PC.
3
4人中选择甲公园的人数X可看作4次独立重复试验中事件C发生的次数,因此,
24
随机变量X服从二项分布.
X可取的值为0,1,2,3,4.
12
PXiC
33
i4
i
4i
,i0,1,2,3,4.
X的分布列为:
X P
0 1 2 3 4
32 8114
X的期望为EX4.
33
16 81
24 818 811 81
【例27】 在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项
是正确的.某考生有4道题已选对正确答案,其余题中有两道只能分别判断2个选项是错误的,还有两道题因不理解题意只好乱猜. ⑴ 求该考生8道题全答对的概率; ⑵若评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”,求该考生所得分数的分布列.
【考点】离散型随机变量的期望与方差 【难度】4星 【题型】解答
【关键词】2010年,北京宣武2模 【解析】略
【答案】⑴说明另四道题也全答对,相互独立事件同时发生,
11111即:.
224464
⑵答对题的个数为4,5,6,7,8,其概率分别为:
11339
P4.
2244641133111324
. P522
224422446422811111 P7 P8. P66464224464
分布列为:
5 20 25 30 35 40
9242281 P
6464646464
25
本文来源:https://www.wddqxz.cn/b8b0a10ea6e9856a561252d380eb6294dd8822e8.html