【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《导数的基本知识点总结》,欢迎阅读!
导数的根本知识点总结
学习没有界限,只有努力了,拼搏了,奋斗了,人生才不会那么枯燥无味。下面是导数的根本知识点总结,欢迎参考阅读! 导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面: 1.导数的常规问题:
(1)刻画函数(比初等方法准确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 1.导数概念的理解。
2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法那么是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法那么,接下来对法那么进展了证明。
3.要能正确求导,必须做到以下两点:
(1)熟练掌握各根本初等函数的求导公式以及和、差、积、商的求导法那么,复合函数的求导法那么。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
fx2fx11、函数fx从x1到x2的平均变化率: x2x1 2、导数定义:fx在点x0处的导数记作yxx0f(x0)limx0f(x0x)f(x0);. x
3、函数yfx在点x0处的导数的几何意义是曲线
4、常见函数的导数公式: yfx在点x0,fx0处的切线的斜率. ①C0; ②(xn)'nxn1;③(sinx)'cosx; ④(cosx)'sinx; ⑤(ax)'axlna;⑥(ex)'ex; ⑦(logax)5、导数运算法那么: '11';⑧(lnx)xlnax 1fxgxfxgx; fxgxfxgxfxgx; 2 fxfxgxfxgxgx02gx3gx.
6、在某个区间a,b内,假设fx0,那么函数yfx在这个区间内单调递增; 假设fx0,那么函数yfx在这个区间内单调递减. 7、求解函数yf(x)单调区间的步骤:
''(1)确定函数yf(x)的定义域; (2)求导数yf(x); (3)解不等式f'(x)0,解集在定义域内的部分为增区间; (4)解不等式f'(x)0,解集在定义域内的部分为减区间. 8、求函数yfx的极值的方法是:解方程fx0.当fx00时: 1如果在x0附近的左侧fx0,右侧fx0,那么fx0是极大值; 2如果在x0附近的左侧fx0,右侧fx0,那么fx0是极小值. 9、求解函数极值的一般步骤:
(1)确定函数的定义域 (2)求函数的导数f’(x) (3)求方程f’(x)=0的根
(4)用方程f’(x)=0的根,顺次将函数的定义域分成假设干个开区间,并列成表格
(5)由f’(x)在方程f’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况
10、求函数yfx在a,b上的最大值与最小值的步骤是: 1求函数yfx在a,b内的极值;
2将函数yfx的各极值与端点处的函数值fa,fb比较,其中最大的一个是最大值,最小的一个是最小值.
本文来源:https://www.wddqxz.cn/b3828fe3f9b069dc5022aaea998fcc22bdd14354.html