【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《勾股定理证明小论文》,欢迎阅读!
勾股定理
勾股定理,指的是“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理虽然只是简单的一句话,但是它却有着十分悠久的历史,尤其是它那种“形数结合”的方法,影响到了不计其数的人。
勾股定理一直是几何学中的明珠,充满了无限的魅力。早在很久以前,我们的前辈们就已经开始研究勾股定理了。
而中国则是发现和研究勾股定理最古老的国家之一。中国古代数学家将直角三角形称为勾股形,西周数学家商高曾在《九章算术》中说过:“若勾三,股四,则弦五。”较短的直角边称为勾,另一直角边称为股,斜边则称为弦,所以勾股定理也称为勾股弦定理。
并且勾股定理又称作毕达哥拉斯定理或毕氏定理。数学公式中常写作
据考证,人类对这条定理的认识,少说也有4000年,并且勾股定理大概共有几百个证明方法,也是数学定理中证明方法最多的定理之一。
接下来我们便介绍几种较有名气的证明方法。
1.】
这是传说中毕达哥拉斯的证明方法:
左图中是由2个正方形和4个相等的三角形拼成的,而右图则是由一个正方形和四个相等的三角形拼成,又因为两幅图中正方形的边长都是(a+b),面积相等,所以可以列出等式——
证明了勾股定理。
2】下面就是中国古代数学家赵爽的证法:
这个图形可以用两种不一样的方法列出两个不一样的等式,且都可以证明出勾股定理。
第一种方法是将这个正方形分成4个相同大小的三角形和一个大正方形,根据
面积的相等,可以列出等式——式子为
化简后的
,最后得出
。
第二种方法则是将图形看成4个大小相同的长方形和一个小正方形,即可列出等式以证明勾股定理。
这两种不同的方法非常简便,直观,充分体现了中国古代人们的聪明机智。
化简后也可
本文来源:https://www.wddqxz.cn/ad205872f46527d3240ce0d1.html