【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《宏基因组学》,欢迎阅读!
宏基因组 ( Metagenome)(也称微生物环境基因组 Microbial Environmental Genome, 或元基因组) 。是由Handelsman等 1998 年提出的新名词, 其定义为“the genomes of the total microbiota found in nature” , 即生境中全部微小生物遗传物质的总和。它包含了可培养的和未可培养的微生物的基因, 目前主要指环境样品中的细菌和真菌的基因组总和。而所谓宏基因组学 (或元基因组学, metagenomics) 就是一种以环境样品中的微生物群体基因组为研究对象, 以功能基因筛选和/或测序分析为研究手段, 以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系为研究目的的新的微生物研究方法。 宏基因组De Novo拼接
由于宏基因组测序的覆盖率通常是不完全的,所以组装所需要的序列并不是很完整。并且组装的时候,可能会把来自不同分类单元(OTU)的序列组装在一起,产生嵌合体基因组。Phrap,Forge,Arachne,JAZZ和Celera Assembler等可用来组装由sanger法产生的宏基因组序列。这些算法大部分都利用mate-pair信息来参与组装。这些算法用顶点来代表每条read,互相重叠的read之间用边连起来,它们的组装问题可以转换成“哈密尔顿路径”搜索问题,即找到一条路径走过所有顶点,且每个顶点只走一次。 菌群间差异分析
有几种基于序列特征的比较,包括样品间GC含量的比较,微生物基因组大小的比较,系统发育关系树的比较和功能组分的比较。许多比较分析都用到了关联统计学的方法,通常假设有几种元数据影响观测到的宏基因组群体的组分。主成分分析(PCA)和非度量多维标度(NM-MDS)用来图形化展示数据并揭示有哪些因素最影响数据。
有几种进行宏基因组比较分析的软件。第一个是MEGAN,可以比较两个或几个标准化后的样品的GC含量。第二种是MG-RAST,提供了一种比较功能和基于序列的分析来上传样本。第三种是CAMERA,提供了BLAST接口让客户可以比对40多种现有的宏基因组数据。 预测编码基因
目前发现编码基因的方法有两种。一种是基于BLAST比对的方法,这种方法通过比对已有的数据库,可以发现宏基因组数据中有哪些已知基因的同源基因的存在,但缺陷是找不到哪些和已经基因没有同源关系的新基因。第二方法是重新预测基因的方法,这些方法大部分是基于有指导学习和统计模式识别的方法,包括隐马尔科夫模型。GeneMark.hmm就是基于单密码子频率的非均一马尔科夫模型
来预测基因的软件,当这些软件用到宏基因组数据上时,这些软件通常无法确定部分的ORF,即使这些 ORF是真实基因的一部分。 代谢通路分析(pathway analysis)
代谢通路分析是为了研究某一个环境中各种代谢途径的富集程度。一般需要根据统计检验方法(如P-value)来筛选。常用的代谢通路数据库有KEGG、Reactome、BioCyc、RegulonDB、WikiPathwans等。KEGG(Kyoto Encyclopedia of Genes and Genomes)是系统分析基因功能、基因组信息数据库,它有助于研究者把基因及表达信息作为一个整体网络进行研究。基因组信息存储在GENES数据库中,包括完整和部分测序的基因组序列;更高级的功能信息存储在Pathway数据库里,包括图解的细胞生化过程如代谢、膜转运、信号传递、细胞周期,还包括同系保守的子通路等信息。KEGG的另一个数据库是LIGAND,包括关于化学物质、酶分子、酶反应等信息,可以免费获取。KEGG提供的整合代谢途径(Pathway)查询十分出色,包括碳水化合物、核苷、氨基酸等的代谢及有机物的生物降解,不仅提供了所有可能的代谢途径,而且对催化各步反应的酶进行了全面的注解,包含有氨基酸序列、PDB的链接等。 应用领域:
肠道、口腔、呼吸道、皮肤、食品微生态,寻找微生物感染问题的原因,以肠道方面的应用为例:
饮食、能量摄取、肥胖与肠道菌群之间的关系 肠道菌群与疾病发生之间的关联
比如未明确感染源的炎症性肠病, 抗生素治疗对肠道菌群的影响
比如说大剂量抗生素治疗后,医生需要观察是否影响到肠道菌群的比例。
不同个体肠道微生物群落结构及其受其他外界因素(压力、致病菌感染、手术)的影响等。
本文来源:https://www.wddqxz.cn/a882024868eae009581b6bd97f1922791688becf.html