古代数学题及解答过程

2022-03-24 05:33:16   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《古代数学题及解答过程》,欢迎阅读!
数学题,解答,古代,过程


古代数学题及解答过程

百鸡问题《张邱建算经》中,原书卷下第38题,也是全书的最后一题:「今有鸡翁一,值钱伍;鸡母一,值钱三;鸡鶵三,值钱一。凡百钱买鸡百只,问鸡翁、母、鶵各几何?答曰:鸡翁四,值钱二十;鸡母十八,值钱五十四;鸡鶵七十八,值钱二十六。又答:鸡翁八,值钱四十;鸡母十一,值钱三十三,鸡鶵八十一,值钱二十七。又答:鸡翁十二,值钱六十;鸡母四、值钱十二;鸡鶵八十四,值钱二十八。」该问题导致三元不定方程组,其重要之处在于开创「一问多答」的先例,这是过去中国古算书中所没有的。秦王暗点兵问题和韩信乱点兵问题,都是后人对物不知其数问题的一种故事化。物不知其数问题出自一千六百年前我国古代数学名著《孙子算经》。原题为:"今有物不知其数,三三数之二,五五数之三,七七数之二,问物几何?"这道题的意思是:有一批物品,不知道有几件。如果三件三件地数,就会剩下两件;如果五件五件地数,就会剩下三件;如果七件七件地数,也会剩下两件。问:这批物品共有多少件?变成一个纯粹的数学问题就是:有一个数,用3除余2,用5除余3,用7除余2。求这个数。这个问题很简单:用3除余2,用7除也余2,所以用37的最小公倍数21除也余2,而用21除余2的数我们首先就会想到2323恰好被5除余3,所23就是本题的一个答案。这个问题之所以简单,是由于有被3除和被7除余数相同这个特殊性。如果没有这个特殊性,问题就不那么简单了,也更有趣得多。




本文来源:https://www.wddqxz.cn/a4c32d0a677d27284b73f242336c1eb91a37333d.html

相关推荐