【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《8.实数有几种分类方法》,欢迎阅读!
8.实数有几种分类方法?
8.实数有几种分类方法?
[解答] 实数有两种分类方法,一种是根据“有理数和无理数统称实数”进行分类.即
另一种是根据“实数也有正负之分”进行分类.即
其中后一种分类方法在解决有关问题时,应用比较广泛,是“分类讨论思想”的重要依据. 例1 化简|x-1|+|x+1|
分析:由x-1=0,x+1=0,确定零点为x=1,x=-1(即使绝对值符号内式子的值等于零的x的值),然后按x≤-1,-1<x≤1和x>1三个区间进行讨论,其实质是把x-1,x+1的值,按正实数、0、负实数进行分类讨论.
解:当x≤-1时,x-1<0,x+1≤0 ∴ 原式=(1-x)+(-x-1)=-2x 当-1<x≤1时,x-1≤0,x+1>0 ∴ 原式=(1-x)+(x+1)=2 当x>1时,x-1>0,x+1>0 ∴ 原式=(x-1)+(x+1)=2x 综上所述,得
[例2] 解方程|x-5|+|x+4|=1 解:当x≤4时,原方程化为 (5-x)+(4-x)=1 ∴x=4
当4<x<5时,原方程化为 (5-x)+(x-4)=1 1=1.
∴4<x<5内的x都是方程的解. 当x≥5时,原方程化为 (x-5)+(x-4)=1 x=5.
综上所述,原方程的解为4≤x≤5 [例3] 解不等式|x-2|>|x+1|-3 解:当x<-1时,原不等式化为 2-x>-(x+1)-3 2>-4
∴ 对x<-1内的任意x的值不等式都成立. 当-1≤x<2时,原不等式化为 2-x>(x+1)-3 x<2 ∴-1≤x<2
本文来源:https://www.wddqxz.cn/9081588ccc22bcd126ff0c6b.html