矩形的性质说课稿

2023-01-26 19:03:27   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《矩形的性质说课稿》,欢迎阅读!
矩形,性质
《矩形的性质》说课稿

一、学生知识状况分析

学生的知识技能基础:矩形的性质一课,是在学生掌握了三角形全等的证明、平行四边形的性质和判定,菱形的性质和判定以及具备了基本的推理能力的基础上安排的,学习正方形的基础,学完本节课后,学生应掌握矩形的性质,会应用性质进行推理解题。

学生的活动经验基础:本节是九年级的第一章第二节的内容,这个年龄段的学生已经具备自主探究和合作学习的能力,他们喜欢动手,喜欢思考一些有挑战性的问题,喜欢向别人展示自己的成果。部分学生学习数学有较强的兴趣,具有一定的探究数学问题的能力和数学活动的经验,逻辑推理能力较强。但大部分学生要把解题的整个过程表述完整、清楚比较困难。

二、教学任务分析

《矩形的性质与判定》一课属于初中平面几何重点知识。本节是在学习了平行四边形的性质与判定以及菱形的基础上,在掌握了证明平行四边形有关内容及特殊平行四边形的一般研究方法后来学习的,它既是平行四边形的延伸,又为后面正方形的学习提供知识、方法的支持,为进一步研究其他图形奠定基础。依据新课标要求,《矩形的性质》不能只停留在知识教学上,而是要把经历探索图形的基本性质的过程,发展学生的基本的推理技能放在首要位置。矩形是的平行四边形中的一种特殊图形,在生活中有着广泛的应用,所以课本很多地方以图片形式呈现了矩形的“原型”,旨在唤起学生的生活经验,促进数学学习因此本节课的教学目标是:

1. 知识与技能:

(1) 掌握矩形的的定义,理解矩形与平行四边形的关系。

(2)理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;

(3)会初步运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力. 2. 过程与方法:

(1)经历探索矩形的概念和性质的过程,发展学生合情推理的意识;

2)通过灵活运用矩形的性质解决有关问题,掌握几何思维方法,并渗透运动联系、从量变到质变的观点.

3. 情感态度与价值观:

(1)在观察、测量、猜想、归纳、推理的过程中,体验数学活动充满探索性和创造性,感受证明的必要性,培养严谨的推理能力,体会逻辑推理的思维价值。

(2) 通过小组合作展示活动,培养学生的合作精神和学习自信心。

(3)从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想。


三、教学过程分析

本节课设计了六个教学环节:第一环节:创设情景,导入新课;第二环节:分组讨论、探求新知;第三环节:层层递进,推理验证;第四环节:建构新知,发展问题;第五环节:合作交流,解决问题;第六环节:反思交流,反馈提高。

第一环节:创设情景,导入新课。活动目的:从学生的已有的知识出发,通过教具演示,让学生经历了矩形概念的探究过程,自然而然地形成矩形的概念。

活动的注意事项: 让学生观察从平行四边形到矩形的变化过程,事实上是在学生已有的平行四边形相关认知的基础上建构,让他们认识到矩形是平行四边形,但却是角度特殊的平行四边形。从而自然得到矩形定义需满足两个条件。1)平行四边形,2)有一个角是直角。定义是本节的关键点,因此观察过程不能省略。

第二环节:分组讨论,探究新知

活动目的:让学生分组探索。教师可引导学生,根据研究平行四边形获得的经验,分别从边、角、对角线三个方面探索矩形的特性,还可提醒学生,这种探索的基础是矩形“有一个角是直角”,学生通过动手测量,动脑思考,动口讨论,自主发现矩形的性质。

活动的注意事项:学生通过对比平行四边形的性质及观察从平行四边形到矩形的变化的过程,再通过测量、观察和讨论,从边、角、对角线三方面不难发现矩形的性质。学生自己讨论得出的结论会更让他们乐于接受,而方法也在此过程中渗透给了学生。因此,教师不要觉得内容比较简单,就越俎代庖,应该给学生留出足够的活动时间。

第三环节:层层递进,推理论

活动目的:根据新课标的精神,不仅要发展学生的合情推理能力,还要发展学生的演绎推理能力。在上一环节观察,测量,猜测的基础上,学生较易得出结论。但结论是否真的正确,必须经过严谨的证明。该环节旨在训练学生规范写出推理过程。

活动的注意事项:特殊四边形这一部分,可以很好地发展学生的逻辑推理能力。既然该环节旨在训练学生规范写出推理过程。那么在活动过程中,就一定要先让学生独立完成,并挑两名学生展示,然后教师点评,最后教师规范的写出推理过程,才可以达到训练的效果。

活动的注意事项:在学习了矩形的性质后,一定要引导学生归纳总结,把新学到的知识和自己的已有知识经验穿成串,从而让自己的认识升华,形成自己的知识系统。

第四环节:建构新知,发展问题

活动目的:先从矩形的对角线相关性质推出直角三角形的性质,达到“学数学数学的目的。 通过习题,让学生掌握“在直角三角形中斜边上的中线等于斜边的一半”这一性质,达到学以致用的目的,


本文来源:https://www.wddqxz.cn/8c93f0b30166f5335a8102d276a20029bd6463b6.html

相关推荐