拉氏逆变换的性质

2022-12-28 03:24:18   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《拉氏逆变换的性质》,欢迎阅读!
变换,性质
拉氏逆变换的性质

拉氏逆变换



中文名称外文名称概念

所属学科拉普拉斯变换(英文:Laplace Transform),是工程数学中常用的一种积分变换。

基本信息







拉氏逆变换/拉氏反变换







Laplace Transform











研究动力学系统的基本数学方法







工程数学





拉普拉斯变换(英文:Laplace Transform),是工程数学中常用的一种积分变换。

如果定义:

f(t),是一个关于t,的函数,使得当t<0,时候,f(t)=0,;

s, 是一个复变量;








mathcal 是一个运算符号,它代表对其对象进行拉普拉斯积分int_0^infty e^ ,dt;F(s),f(t),的拉普拉斯变换结果。

f(t),的拉普拉斯变换由下列式子给出:

F(s),=mathcal left =int_ ^infty f(t),e^ ,dt

拉普拉斯逆变换,是已知F(s),,求解f(t),的过程。用符号 mathcal ^ ,表示。

拉普拉斯逆变换的公式是:

对于所有的t>0,;

f(t)

= mathcal ^ left

=frac int_ ^ F(s),e^ ,ds

c,是收敛区间的横坐标值,是一个实常数且大于所有F(s),的个别点的实部值。

为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。

f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ&owega; 均为实变数,j2=-1F(s)f(t)间的关系由下面定义的积分所确定:


本文来源:https://www.wddqxz.cn/83b2a62ea16925c52cc58bd63186bceb19e8ed30.html

相关推荐