【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《数学六年级下册常见知识点总结》,欢迎阅读!
数学六年级下册常见知识点总结
数学六年级下册常见知识点总结
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。以下是店铺收集整理的数学六年级下册常见知识点总结,欢迎阅读,希望大家能够喜欢。
1.负数:负数是数学术语,指小于0的实数,如3。
任何正数前加上负号都等于负数。在数轴线上,负数都在0的左侧,所有的负数都比自然数小。负数用负号“-”标记,如2,5.33,45,0.6等。
2.正数:大于0的数叫正数(不包括0)
若一个数大于零(>0),则称它是一个正数。正数的前面可以加上正号“+”来表示。正数有无数个,其中分正整数,正分数和正无理数。
3.正数的几何意义:数轴上0右边的数叫做正数
4.数轴:规定了原点,正方向和单位长度的直线叫数轴。 所有的实数都可以用数轴上的点来表示。也可以用数轴来比较两个实数的大小。
5.数轴的三要素:原点、单位长度、正方向。
6.圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体
即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。 其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。
7.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。设一个圆柱底面半径为r,高为h,则体积V:V=πr2h ;如S为底面积,高为h,体积为V:V=Sh
8.圆柱的.侧面积:圆柱的侧面积=底面的周长*高,S侧=Ch (注:c为πd)
圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)。
特征:圆柱的底面都是圆,并且大小一样。
9.圆锥解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。
10.圆锥立体几何定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。该直角边叫圆锥的轴 。
11.圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。
根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:V=1/3Sh
S是圆锥的底面积,h是圆锥的高,r是圆锥的底面半径
12.圆锥体展开图的绘制:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。(如右图)在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)
13.圆锥的表面积:一个圆锥表面的面积叫做这个圆锥的表面积。 圆锥的表面积由侧面积和底面积两部分组成。
S=πR2(n/360)+πr2或(1/2)αR2+πr2(此n为角度制,α为弧度制,α=π(n/180)
14.圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
体积和高相等的圆锥与圆柱(等低等高)之间,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。
底面积和高不相等的圆柱圆锥不相等。
15.生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。
【数学六年级下册常见知识点总结】
本文来源:https://www.wddqxz.cn/77c62c5a158884868762caaedd3383c4ba4cb453.html