初中数学余弦知识的公式定理知识点

2022-12-26 04:00:17   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《初中数学余弦知识的公式定理知识点》,欢迎阅读!
余弦,知识点,定理,公式,初中
初中数学余弦知识的公式定理知识点

初中数学余弦知识的公式定理知识点大全

余弦的知识运用相对比正弦还要多,原因就在于余弦的知识要领涉及到很多领域,不单单在数学学习中。

余弦

A的邻边比斜边 叫做∠A的余弦,记作cosA(由余弦英文cosine简写得来),即cosA=A的邻边/斜边(直角三角形)

定理 cos=x/r

余弦定理三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.



在余弦定理中,令C=90°,这时cosC=0,所以 c2=a2+b2

a 0` 30` 45` 60` 90` cosa 1 √3/2 √2/2 1/2 0

∴cos30°= √3/2 cos45°=√2/2 cos60°=1/2 cos90°=0 (1)已知三角形的三条边长,可求出三个内角; (2)已知三角形的两边及夹角,可求出第三边;

(3)已知三角形两边及其一边对角,可求其它的角和第三条边。(见解三角形公式,推导过程略。)

判定定理一(两根判别法)

若记m(c1,c2)c的两值为正根的个数,c1c的表达式中根号前取加号的值,c2c`表达式中根号前取

减号的值


①若m(c1,c2)=2,则有两解; ②若m(c1,c2)=1,则有一解;

③若m(c1,c2)=0,则有零解(即无解)

注意:若c1等于c2c1c2大于0,此种情况算到第二种情况,即一解。

判定定理二(角边判别法) 一当a>bsinA

①当b>acosA>0(A为锐角)时,则有两解;

②当b>acosA<=0(A为直角或钝角)时,则有零解(即无解); ③当b=acosA>0(A为锐角)时,则有一解;

④当b=acosA<=0(A为直角或钝角)时,则有零解(即无解); ⑤当b

二当a=bsinA

①当cosA>0(A为锐角)时,则有一解;

②当cosA<=0(A为直角或钝角)时,则有零解(即无解); 三当a 性质

对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为abc 三角为ABC ,则满足性质――

a^2 = b^2 + c^2 - 2bccosA b^2 = a^2 + c^2 - 2accosB c^2 = a^2 + b^2 - 2abcosC cosC = (a^2 + b^2 - c^2) / (2ab) cosB = (a^2 + c^2 - b^2) / (2ac)


本文来源:https://www.wddqxz.cn/7056de927a3e0912a21614791711cc7930b77824.html

相关推荐