【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《(完整版)初中数学教学大纲与初中数学重点知识点总结2021》,欢迎阅读!
精选名师资料
初中数学大纲
一、考试指导思想 初中毕业数学学业考试是依据《全日
制义务教育数学课程标准(实验稿)》(以下简称《数学课
程标准》)进行的义务教育阶段数学学科的终结性考试。考试要有利于全面贯彻国家教育方针,推进 素质教育;有利于体现九年义务教育的性质,全面提高教育质量;有利于数学课程改革,培养学生的 创新精神和实践能力;有利于减轻学生过重的课业负担,促进学生生动、活泼、主动地学习。
数学学业考试命题应当根据学生的年龄特征、思维特点、数学背景和生活经验编制试题,面向 全体学生, 使具有不同认知特点、 不同数学发展程度的学生都能正常表现自己的学习状况。 试要求公正、客观、全面、准确地评价学生通过初中教育阶段的数学学习所获得的发展状况。
数学学业考试要重视对学生学习数学的结果与过程的评价, 重视对学生数学思考能力和解决问 题能力的发展性评价, 重视对学生数学认识水平的评价; 学业考试试卷要有效发挥选择题、 填空题、 计算(求解)题、证明题、开放性问题、应用性问题、阅读分析题、探索性问题及其它各种题型的 功能, 试题设计必须与其评价的目标相一致, 加强对学生思维水平与思维特征的考查, 使试题的解 答过程体现《数学课程标准》所倡导的数学活动方式,如观察、实验、猜测、验证、推理等等。
二、考试内容和要求
(一)考试内容 数学学业考试应以《数学课程标准》所规定的四大学习领域,即数与代数、空间与图形、统计
与概率、实践与综合应用的内容为依据,主要考查基础知识、基本技能、基本体验和基本思想。
1.关注基础知识与基本技能 了解数的意义,理解数和代数运算的算理和算法,能够合理地进行基本运算与估算;能够在实
际情境中有效地使用代数运算、代数模型及相关概念解决问题。
能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、
位 学业考
置与特征; 能够在头脑里构建几何对象, 进行几何图形的分解与组合, 能够对某些图形进行简单的 变换;能够借助数学证明的方法确认数学命题的正确性。
正确理解数据的含义, 能够结合实际需要有效地表达数据特征, 会根据数据结果做合理的预测; 了解概率的涵义,能够借助概率模型或通过设计活动解释事件发生的概率。
有条件的地区还应当考查学生能否借助计算器进行较复杂的运算和从事数学规律的探究活动。 2. 关注“数学活动过程”
包括数学活动过程中所表现出来的思维方式、思维水平,对活动对象、相关知识与方法的理解 深度;从事探究的意识、能力和信心等。也包括能否通过观察、实验、归纳、类比等活动获得数学 猜想,并寻求证明猜想的合理性;能否使用恰当的语言有条理地表达数学的思考过程。
3.关注“数学思考”
“数学思考”是指学生在数感与符号感、空间观念、统计意识、推理能力、应用数学的意识等 方面的发展情况。其主要内容包括:
1
精品学习资料 第 1 页,共 14 页
精选名师资料
能用数来表达和交流信息;能够使用符号表达数量关系,并借助符号转换获得对事物的理解; 能够观察到现实生活中的基本几何现象; 能够运用图形形象地表达问题、 借助直观进行思考与推理; 能意识到做一个合理的决策需要借助统计活动去收集信息;
面对数据时能对它的来源、 处理方法和
由此而得到的推测性结论做合理的质疑; 能正确地认识生活中的一些确定或不确定现象; 能从事基 本的观察、分析、实验、猜想和推理活动,并能够有条理地、清晰地阐述自己的观点。
4.关注“解决问题能力”
能从数学角度提出问题、理解问题、并综合运用数学知识解决问题;具有一定的解决问题的基 本策略;能合乎逻辑地与他人交流;具有初步的反思意识。
5.关注“对数学的基本认识”
形成对数学内容统一性的认识(不同数学知识之间的联系、不同数学方法之间的相似性等);深化对数学与现实或其他学科知识之间联系的认识等等。
(二)考试要求
1.《数学课程标准》规定了初中数学的教学要求
( 1)使学生获得适用未来社会生活和进一步发展所必需的重要数学知识,以及基本的数学思 想方法和必要的应用技能;
( 2)初步学会运用数学的思维方式观察、分析现实社会,解决日常生活和其他学科学习中的 问题,增强应用数学的意识;
( 3)体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数 学的信心;
( 4)具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。 2.《数学课程标准》阐述的教学要求具体分以下几个层次
知识技能要求:
( 1)了解:能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的 特征,从具体情境中辨认出这一对象。
( 2)理解:能描述对象特征和由来;能明确地阐述对象与相关对象之间的区别和联系。 ( 3)掌握:能在理解的基础上,把对象运用到新的情境中去。
( 4)运用:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。 过程性要求:
( 5)经历(感受):在特定的数学活动中,获得一些初步的感受。
( 6)体验(体会):参与特定的数学活动,在具体情境中认识对象的特征,获得一些经验。
精品学习资料 第 2 页,共2
页
14
精选名师资料
( 7)探索:主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或 与其他对象的区别和联系。
这些要求从不同角度表明了数学学业考试要求的层次性。
初中数学知识点总结
一、基本知识
㈠、数与代数 A 、数与式:
1、有理数 有理数:①整数→正整数
②分数→正分数 /负分数
数轴:①画一条水平直线,在直线上取一点表示
0(原点),选取某一长度作为单位长度,规定直线上向右的方
/0/负整数
向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那 么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点, 位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于 于 0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的 绝对值是他的相反数、 0 的绝对值是 0。两个负数比较大小,绝对值大的反而小。 有理数的运算:
加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为 值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与 减法:减去一个数,等于加上这个数的相反数。 乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与 倒数。
除法:①除以一个数等于乘以一个数的倒数。②
0 不能作除数。
A 叫底数, N 叫次数。
0 相乘得 0。③乘积为 1 的两个有理数互为 0 相加不变。
0;绝对值不等时,取绝对
0,负数小
乘方:求 N 个相同因数 A 的积的运算叫做乘方,乘方的结果叫幂, 混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2、实数 无理数:无限不循环小数叫无理数
平方根:①如果一个正数
X 的平方等于 A ,那么这个正数 X 就叫做 A 的算术平方根。②如果一个数 X 的平方等
于 A ,那么这个数 X 就叫做 A 的平方根。③一个正数有 数 A 的平方根运算,叫做开平方,其中 立方根:①如果一个数
2 个平方根 /0 的平方根为 0/负数没有平方根。④求一个
A 叫做被开方数。
0 的立方
X 的立方等于 A ,那么这个数 X 就叫做 A 的立方根。②正数的立方根是正数、
A 的立方根的运算叫开立方,其中
A 叫做被开方数。
根是 0、负数的立方根是负数。③求一个数
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒 数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。 3、代数式
代数式:单独一个数或者一个字母也是代数式。
3
精品学习资料 第 3 页,共 14 页
精选名师资料
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合 并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。 4、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项 式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中, 次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。 幂的运算: AM+AN=A ( M+N ) ( AM )N=AMN ( A/B )N=AN/BN
除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作 为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多 项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 公式两条:平方差公式 /完全平方公式
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则 连同他的指数一起作为商的一个因式。 得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。 方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式 A 除以整式 B ,如果除式 B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为 分式的分子与分母同乘以或除以同一个不等于 分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。 除法:除以一个分式等于乘以这个分式的倒数。
加减法: ①同分母分式相加减, 分母不变, 把分子相加减。 ②异分母的分式先通分, 化为同分母的分式, 再加减。 分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为 B 、方程与不等式
1、方程与方程组 一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是
等式两边同时加上或减去或乘以或除以(不为
1,这样的方程叫一元一次方程。②
0)一个代数式,所得结果仍是等式。
1。
1 的方程叫做二元一次方程。
0 的解称为原方程的增根。
0 的整式,分式的值不变。
0。②
②多项式除以单项式, 先把这个多项式的每一项分别除以单项式,
再把所
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为 二元一次方程:含有两个未知数,并且所含未知数的项的次数都是 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。 解二元一次方程组的方法:代入消元法
/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为 1)一元二次方程的二次函数的关系
2 的方程
大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方 程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当 一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与
Y 的 0 的时候就构成了
X 轴的交点。
4
精品学习资料 第 4 页,共 14 页
精选名师资料
也就是该方程的解了 2)一元二次方程的解法 大家知道,二次函数有顶点式(
-b/2a,4ac-b2 /4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方
程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解 (1 )配方法 利用配方,使方程变为完全平方公式,在用直接开平方法去求出解 (2) 分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的 形式去解 (3) 公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根 3)解一元二次方程的步骤: ( 1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为 平方公式
(2) 分解因式法的步骤:
X
b
b
2a
2
4 ac
1,再同时加上 1 次项的系数的一半的平方,最后配成完全
把方程右边化为 0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如 果可以,就可以化为乘积的形式 (3) 公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为 4)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和
=-b/a,二根之积 =c/a
a,一次项的系数为 b,常数项的系数为 c
也可以表示为 x1+x2=-b/a,x1x2=c/a 。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用 5)一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△” 种情况:
I 当△ >0 时,一元二次方程有 2 个不相等的实数根; II 当△ =0 时,一元二次方程有 2 个相同的实数根;
III 当△ <0 时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有 2、不等式与不等式组
不等式:①用符号〉 ,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不 变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不 等号方向相反。 不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成
这个不等式的解集。③求不等式解集的过程叫做解不等式。
一元一次不等式: 左右两边都是整式, 只含有一个未知数, 且未知数的最高次数是 一元一次不等式组: ①关于同一个未知数的几个一元一次不等式合在一起,
1 的不等式叫一元一次不等式。 2 个虚数根)
,读作“ diao ta”,而△ =b2-4ac,这里可以分为 3
就组成了一元一次不等式组。 ②一元
一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,
5
精品学习资料 第 5 页,共 14 页
精选名师资料
叫做解不等式组。
一元一次不等式的符号方向: 在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数) 在不等式中,如果减去同一个数(或加上一个负数)
,不等式符号不改向;例如: ,不等式符号不改向;例如:
A>B,A+C>B+C A>B ,A-C>B-C
在不等式中,如果乘以同一个正数,不等号不改向;例如: 在不等式中,如果乘以同一个负数,不等号改向;例如: 如果不等式乘以 0,那么不等号改为等号
A>B , A*C>B*C ( C>0) A>B , A*C( C<0 )
所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的 数就不等为 0,否则不等式不成立; 3、函数
变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 一次函数:①若两个变量
X ,Y 间的关系式可以表示成
Y=KX+B ( B 为常数, K 不等于 0)的形式,则称 Y 是 X
的一次函数。②当 B=0 时,称 Y 是 X 的正比例函数。 一次函数的图象:①把一个函数的自变量
X 与对应的因变量 Y 的值分别作为点的横坐标与纵坐标,在直角坐标
Y=KX 的图象是经过原点的一
系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数 条直线。③在一次函数中,当
K〈 0,B〈 O,则经 234 象限;当 K〈 0, B〉0 时,则经 124 象限;当 K 〉0,B〈0
时,则经 134 象限;当 K 〉 0, B〉 0 时,则经 123 象限。④当 K 〉 0 时, Y 的值随 X 值的增大而增大,当 X 〈0 时, Y 的值随 X 值的增大而减少。 ㈡空间与图形 A 、图形的认识 1、点,线,面
点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面 动成体。 展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相
等,棱柱的上下底面的形状相同,侧面的形状都是长方体。② 截一个几何体:用一个平面去截一个图形,截出的面叫做截面。 视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。 2、角
线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限 延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。 比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的 是一分,一分的 1/60 是一秒。
角的比较: ①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,
当终边和始
1/60
N 棱柱就是底面图形有 N 条边的棱柱。
边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的 顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
6
精品学习资料 第 6 页,共 14 页
精选名师资料
平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。 ③如果两条直线都与第
3 条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面 内,过一点有且只有一条直线与已知直线垂直。 垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂 直平分线是一条直线,所以在画垂直平分线的时候,确定了 点。 垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等; 判定定理:到线段 2 端点距离相等的点在这线段的垂直平分线上 角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出 现直线, 这是角平分线的对称轴才会用直线的, 等的点 性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上 正方形:一组邻边相等的矩形是正方形 性质:正方形具有平行四边形、菱形、矩形的一切性质
判定: 1、对角线相等的菱形 2、邻边相等的矩形
这也涉及到轨迹的问题, 一个角个角平分线就是到角两边距离相
2 点后(关于画法,后面会讲)一定要把线段穿出
2
二、基本定理
1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理 三角形两边的和大于第三边 16、推论 三角形两边的差小于第三边 17、三角形内角和定理
三角形三个内角的和等于
180°
18、推论 1 直角三角形的两个锐角互余
7
精品学习资料 第 7 页,共 14 页
精选名师资料
19、推论 2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论 3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等
22、边角边公理 (SAS) 有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理 ( ASA) 有两角和它们的夹边对应相等的 两个三角形全等
24、推论 (AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理 (SSS) 有三边对应相等的两个三角形全等
26、斜边、直角边公理 (HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27、定理 1 在角的平分线上的点到这个角的两边的距离相等 28、定理 2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 30、等腰三角形的性质定理
等腰三角形的两个底角相等
(即等边对等角) 31、推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33、推论 3 等边三角形的各角都相等,并且每一个角都等于 60°
34、等腰三角形的判定定理
如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论 1 三个角都相等的三角形是等边三角形
36、推论 2 有一个角等于 60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于
30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理 1 关于某条直线对称的两个图形是全等形
43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理 直角三角形两直角边 a、b 的平方和、等于斜边 c 的平方,即 a2+b2=c2 47、勾股定理的逆定理
如果三角形的三边长 a、b、 c 有关系 a2+b2=c2,那么这个三角形是直角三角形
48、定理 四边形的内角和等于 360° 49、四边形的外角和等于 360°
50、多边形内角和定理
n 边形的内角的和等于( n-2)× 180°
51、推论 任意多边的外角和等于 360°
52、平行四边形性质定理 1 平行四边形的对角相等 53、平行四边形性质定理
2 平行四边形的对边相等
54、推论 夹在两条平行线间的平行线段相等 55、平行四边形性质定理 3 平行四边形的对角线互相平分
56、平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形 57、平行四边形判定定理 2 两组对边分别相等的四边
形是平行四边形
58、平行四边形判定定理
3 对角线互相平分的四边形是平行四边形
精品学习资料 第 8 页,共8 14 页
精选名师资料
59、平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形
60、矩形性质定理 1 矩形的四个角都是直角 61、矩形性质定理 2 矩形的对角线相等 有三个角是62、矩形判定定理 1 直角的四边形是矩形 对角线相63、矩形判定定理 2 等的平行四边形是矩形 菱形的
64、菱形性质定理 1 四条边都相等
65、菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66、菱形面积 =对角线乘积的一半,即 S=( a× b)÷ 2 67、菱形判定定理 1 四边都相等的四边形是菱形
68、菱形判定定理 2 对角线互相垂直的平行四边形是菱形 69、正方形性质定理 1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71、定理 1 关于中心对称的两个图形是全等的
72、定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74、等腰梯形性质定理
等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等 76、等腰梯形判定定理
在同一底上的两个角相等的梯
形是等腰梯形
77、对角线相等的梯形是等腰梯形 78、平行线等分线段定理
如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80、推论 2
经过三角形一边的中点与另一边平行的直线,必平分第三边
81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半 82、梯形中位线定理
梯形的中位线平行于两底,并且等于两底和的一半
L= ( a+b)÷ 2
S=L × h
83、 (1) 比例的基本性质:如果 a:b=c:d,那么 ad=bc
如果 ad=bc ,那么 a:b=c:d
84、 (2) 合比性质:如果 a/ b=c/ d,那么 (a± b)/ b=(c± d)/ d 85、 (3) 等比性质:如果 a/ b=c/ d= =m/ n
(b+d+
+n≠ 0),
那么 (a+c+ +m)/ (b+d+
+n)=a/ b
86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87、推论
平行于三角形一边的直线截其他两边(或两边的延长线)
,所得的对应线段成比例
88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角 形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例
90、定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91、相似三角形判定定理
1 两角对应相等,两三角形相似(
ASA )
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93、判定定理 2 两边对应成比例且夹角相等,两三角形相似( SAS)
94、判定定理 3 三边对应成比例,两三角形相似(
SSS)
95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 这两个直角三角形相似
精品学习资料 第 9 页,共那么
9页
14
精选名师资料
96、性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97、性质定理 2 相似三角形周长的比等于相似比 98、性质定理 3 相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值 100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合 103、圆的外部可以看作是圆心的距离大于半径的点的集合 104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109、定理 不在同一直线上的三点确定一个圆。
110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111、推论 1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112、推论 2 圆的两条平行弦所夹的弧相等 113、圆是以圆心为对称中心的中心对称图形
114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理 一条弧所对的圆周角等于它所对的圆心角的一半
117、推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118、推论 2 半圆(或直径)所对的圆周角是直角;
90°的圆周角所对的弦是直径
119、推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121、①直线 L 和⊙ O 相交 d﹤ r
②直线 L 和⊙ O 相切 d=r ③直线 L 和⊙ O 相离 d﹥ r
122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123、切线的性质定理
圆的切线垂直于经过切点的半径
124、推论 1 经过圆心且垂直于切线的直线必经过切点 125、推论 2 经过切点且垂直于切线的直线必经过圆心
126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角 127、圆的外切四边形的两组对边的和相等
128、弦切角定理 弦切角等于它所夹的弧对的圆周角
129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
精品学习资料 第 10 页,共10
14 页
精选名师资料
130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 133、推论 从圆外一点引圆的两条割线,这一点到每条 134、如果两个圆相切,那么切点一定在连心线上
割线与圆的交点的两条线段长的积相等
135、①两圆外离
d﹥ R+r ②两圆外切 d=R+r ③两圆相交
R-r﹤ d﹤ R+r(R ﹥ r)
④两圆内切
d=R-r(R ﹥ r) ⑤两圆内含
d﹤ R-r(R ﹥r)
136、定理 相交两圆的连心线垂直平分两圆的公共弦 137、定理 把圆分成 n(n≥ 3):
⑴依次连结各分点所得的多边形是这个圆的内接正
n 边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正 138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139、正 n 边形的每个内角都等于( n-2)× 180°/ n 140、定理 正 n 边形的半径和边心距把正 n 边形分成 2n 个全等的直角三角形
141、正 n 边形的面积 Sn=pnrn / 2
p 表示正 n 边形的周长
142、正三角形面积
3a 4
a 表示边长
143、如果在一个顶点周围有 k 个正 n 边形的角, 由于这些角的和应为 360°,因此( n-2) (k-2)=4
144、弧长计算公式: L=
n R/ 180
145、扇形面积公式: S 扇形 = n R 2
/360=LR / 2 146、内公切线长 = d-(R-r)
外公切线长 = d-(R+r)
一、常用数学公式
公式分类 乘法与因式公式表达式 分解 a3+b3=(a+b)(a 2-a2-b2 =(a+b)(a-b)
ab+b2)
a3
-b3
=(a-b(a2
+ab+b2
) 三角不等式 |a+b|≤ |a|+|b|
|a-b|≤ |a|+|b| |a|≤ b<=>-b ≤ a≤ b |a-b|≥ |a|-|b| -|a≤| a≤ |a| 一元二次方程的解 X
b
b
2
4ac
2 a
根与系数的关系
X1+X2=-b/a
精品学习资料 n 边形
k× (n-2)180 °/ n=360 °化为
11
第 11 页,共 14 页
精选名师资料
X1*X2=c/a 判别式 b2-4ac=0 b-4ac>0 b-4ac<0
22
注:韦达定理
注:方程有两个相等的实根 注:方程有两个不等的实根 注:方程没有实根,有共轭复数根
某些数列前 n 项和 1+2+3+4+5+6+7+8+9+ 2+4+6+8+10+12+14+ 13+23+33+43+53+63+ 正弦定理
+n=n(n+1)/2 1+3+5+7+9+11+13+15+ +(2n)=n(n+1)
22n3=n(n+1) /4
+(2n-1)=n 2
+n2=n(n+1)(2n+1)/6 +n(n+1)=n(n+1)(n+2)/3
12+22+32+42+52+62+72+82+ 1* 2+2*3+3*4+4*5+5*6+6*7+
a/sinA=b/sinB=c/sinC=2R
注:其中 R 表示三角形的外接圆半径 余弦定理
b2=a2+c2-2accosB
注:角 B 是边 a 和边 c 的夹角
二、基本方法
1、配方法
所谓配方, 就是把一个解析式利用恒等变形的方法, 通过配方解决数学问题的方法叫配方法。
把其中的某些项配成一个或几个多项式正整数次幂的和形式。
配方法是数学中一种重要的恒等
其中, 用的最多的是配成完全平方式。
变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解 析式等方面都经常用到它。 2、因式分解法
因式分解, 就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,
它作为数学的一个有力工
具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍 的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等 等。 3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。 是在一个比较复杂的数学式子中, 解决。
4、判别式法与韦达定理
2
一元二次方程 ax2+bx+c=0 ( a、b、 c 属于 R, a≠0)根的判别,△ =b-4ac,不仅用来判定根的性质,而且作为一
我们通常把未知数或变数称为元, 所谓换元法, 就
用新的变元去代替原式的一个部分或改造原来的式子, 使它简化, 使问题易于
种解题方法,在代数式变形,解方程 (组 ),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以 求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等 5、待定系数法
在解数学问题时, 若先判断所求的结果具有某种确定的形式,
其中含有某些待定的系数, 而后根据题设条件列出
从而解答数学问题, 这种
关于待定系数的等式, 最后解出这些待定系数的值或找到这些待定系数间的某种关系, 解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方
12
精品学习资料 第 12 页,共 14 页
精选名师资料
程 (组 )、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种 解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利 于问题的解决。 7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理, 导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法 有一种 )与穷举反证法 (结论的反面不只一种 )。用反证法证明一个命题的步骤,大体上分为: (3) 结论。
反设是反证法的基础, 为了正确地作出反设, 掌握一些常用的互为否定的表述形式是有必要的, 存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大 至少有一个、一个也没有;至少有
例如: 是、不是; (结论的反面只 (1) 反设; (2)归谬;
(小 )于、不大 (小 )于;都是、不都是;
n 个、至多有 (n-1) 个;至多有一个、至少有两个;唯一、至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之 木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与 反设矛盾;自相矛盾。 8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理, 证明平面几何题有时会收到事半功倍的效果。 是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,
其困难在添置辅助线。 面积法的特点是把已知和未知各量用面积公式联系起
只需要计算,
不仅可用于计算面积, 而且用它来
称为面积方法, 它
运用面积关系来证明或计算平面几何题的方法,
来,通过运算达到求证的结果。 所以用面积法来解几何题, 几何元素之间关系变成数量之间的关系, 有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。 9、几何变换法
在数学问题的研究中, 常常运用变换法, 把复杂性问题转化为简单性的问题而得到解决。 任一元素到同一集合的元素的一个一一映射。
中学数学中所涉及的变换主要是初等变换。
所谓变换是一个集合的 有一些看来很难甚至于
无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教 学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。 几何变换包括: ( 1)平移;(2)旋转;( 3)对称。
10、客观性题的解题方法 选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活, 可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。 填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利
于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。 要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与 技巧。下面通过实例介绍常用方法。
( 1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正 确答案,这就是传统的解题方法,这种解法叫直接推演法。
( 2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验 证,找出正确答案,此法称为验证法(也称代入法)
。当遇到定量命题时,常用此法。
( 3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特 殊元素法。
13
精品学习资料 第 13 页,共 14 页
精选名师资料
( 4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除, 余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
( 5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是 解选择题常用方法之一。
( 6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。
精品学习资料第 14 页,共14
14 页
本文来源:https://www.wddqxz.cn/59e65dcde309581b6bd97f19227916888486b998.html