圆柱的体积教学反思

2022-06-01 11:08:40   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《圆柱的体积教学反思》,欢迎阅读!
圆柱,体积,反思,教学
圆柱的体积教学反思

一、本节课主要是引导学生探索并掌握圆柱的体积公式,主要重视了以下几方面: 1、重视先猜想、再验证的思路来引入教学

新课伊始,课件出示三个几何体的底面和高,引导学生来观察这三个几何体,发现它们的底面积都相等,高也都相等。进一步引导思考:想一想,长方体和正方体的体积相等吗?为什么?猜一猜,圆柱的体积与长方体和正方体的体积相等吗?学生认同,并提出等于底面积乘高。教师再次抛出问题:这仅仅是猜想,那用什么办法验证呢?今天这节课就来研究个问题。

2、重视利用知识、方法的迁移来展开教学

本课的例题探索,有一个目标就是使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。因此,笔者在执教时,根据陈星月的回答顺势复习了圆面积的推导:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。接着提问:那么,受这个启发,那我们能不能将圆柱转化成长方体来计算体积呢?首先实物演示圆柱切拼的过程。把圆柱的底面平均分成16份,切开后可以拼成一个近似的长方体。然后进行课件演示,发现:把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。这样有利于激活学生已有的知识和经验,使学生充分体会圆柱体积公式推导过程的合理性,并不断丰富对图形转化方法的感受。

3、重视通过核心问题的讨论和板书的精当设计来突出重点、突破难点。

核心问题即指中心问题,是诸多问题中相对最具思维价值、最利于学生思考及最能揭示事物本质的问题。它是在教学过程中,为学生更好地理解和掌握新知、更好地积累学习验和方法,针对具体教学内容,提炼而成的教学中心问题。就如圆柱体积的计算而言,在这节课的教学过程中,教师抓住“圆柱的体积可能跟圆柱的哪些条件有关呢?”“拼成的长方体与原来的圆柱有什么关系?”“要计算圆柱的体积一般要知道哪些条件?”这三个问题,使学生在获取圆柱体积公式的同时又了解了体积公式的由来,并及时总结了思考问题的方法。核心问题也可以指为了探究知识的来龙去脉而在关键环节提出的指向性问题。当然,需要注意和改进的地方是:书写格式的规范

圆柱的体积教学小学几何知识的重头戏。教学这节课时,我首先搜集了网上的大量课例,想寻找 一些灵感来装饰这节课的开头——创设怎样的情境才能新颖又能够为整节课的教学服务呢?想了好几套方案最后还是采用谈话法引出直柱体,再从直柱体牵出圆柱体,此带出圆柱的体积的. 板书“圆柱的体积”课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生


们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,首先应复习一下圆面积计算公式的推导过程,这样有助于学生猜想,接着在回忆了长方体、正方体体积计算方法之后,再接着探究。这样由平面图形到立体图形,过度自然、流畅,便于学生的思维走向正确方向,这时教师的引导才是行之有效的。

二、 建立切拼表象,渗透极限思想

学生进行数学探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,非常遗憾。但我使用了课件-----把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体 ,展示切拼过程.学生虽然没有亲身经历,但也一目了然. 三、 练习层层递进,弱化繁琐计算

为了让学生能熟练地掌握计算圆柱的体积,在设计练习时要多动脑花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出四种类型: 1.已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:v=sh 2.已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:v=πr²h。 3.已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用 一公式:v=π(d/2)²h。

4.已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:v=π(c÷π÷2)²h

在巩固练习中,只要从这四种类型去考虑,做到面面俱到,逐层深入,由易到难,学生才能真正掌握好计算圆柱体积的方法。课堂上的时间有限,课本的标注也有:今后涉及圆柱圆锥的计算可以使用计算器。所以这节课教学时基本没有让学生参与繁琐的计算,学生学的也很轻松。 圆柱的体积教学反思

本课主要内容是圆柱的体积公式的推导及其应用。因为公式的推导过程是个难点,因此在教学时,重点加强了学生的动手操作,帮助学生理解公式的来源。从整个过程可以看出:学生是聪明的,是有创造力的。


在新授过程中,我主要给学生提供了学具,让同桌合作动手拼摆,自行研究发现圆柱的底面积、高与拼成的近似长方体的底面积、高之间的关系,从而根据体积关系推导出圆柱体的体积计算公式。当学生面对这些情景时,能迅速从圆的面积计算公式推导过程中检索出相关知识,根据已有知识推出新的结论。尽管当时有的同学推导出了“错误答案”,但这些错误也是有价值的,它闪烁着学生探索的智慧的火花,折射出了学生的创造精神。我当时给予了他们充分的肯定,及时保护了他们的探究精神。因为学生就是在不断发生错误,不断纠正错误的过程中自信的成长的。

在练习的过程中,我重点让学生尝试去探索解决了如何计算“一支粉笔的体积“和”水桶的容积“这类日常生活中的问题。当时出现了两种算法。有位同学就提出了“两种算法的误差这么小,这两种算法都是可行的”。由于计算要求的结果是一个大约的数值,用这两种方法都获得了相同的结果,所以他得出了这样的结论,可喜可贺!可正确的计算方法并非如此,就在这位同学沾沾自喜之时,我马上反问道“结合这两种形体,你们认为这种计算它们体积的方法可行吗?”于是学生露出了疑问的神色。接着组织学生展开讨论,联想到这两种形体的特征,找到了答案。使学生发现平面图形中的一些规律照搬到立体图形中有时会行不通的。懂得了知识并非是一成不变的。如果我当时不提出异议,也不加以说明,就会给学生造成“圆台的体积也可以利用圆柱的体积计算公式来计算”的错误认识,对学生的后续学习会造成不利的影响。

这样的教学使学生在探索过程中虽不能很快获得结论性的知识,但却让他们尝试了科学探究的方法与过程,形成了良好的思维品质,增进了情感体验。就学生的长远发展而言,谁能说让学生经历这样的探究过程不比获得现成的结论知识更富有积极的意义呢?从整个过程来看,谁又能说我们的孩子不是聪明的,富有创造力的呢?


本文来源:https://www.wddqxz.cn/55369ee6657d27284b73f242336c1eb91b3733dd.html

相关推荐