【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《不等式的概念及不等式的解集》,欢迎阅读!
不等式的概念及不等式的解集
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。下面是店铺给大家整理的简介,希望能帮到大家! 不等式
用不等号表示不等关系的式子,叫做不等式。
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≤,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。 不等式的解集
对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
对于一个含有未知数的不等式,它的.所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
求不等式的解集的过程,叫做解不等式。 不等式的基本性质
①如果x>y,那么y如果y,那么x>y;(对称性) ②如果x>y,y>z;那么x>z;(传递性)
③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)
④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz乘法原则)
⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件) ⑥如果x>y>0,m>n>0,那么xm>yn;
⑦如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n
次幂的n次幂(n为负数)。
或者说,不等式的基本性质的另一种表达方式有: ①对称性; ②传递性;
③加法单调性,即同向不等式可加性; ④乘法单调性;
⑤同向正值不等式可乘性; ⑥正值不等式可乘方; ⑦正值不等式可开方; ⑧倒数法则。
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。
另,不等式的特殊性质有以下三种:
①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;
②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;
【不等式的概念及不等式的解集】
本文来源:https://www.wddqxz.cn/51a04af66237ee06eff9aef8941ea76e58fa4a8e.html